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Introduction

Ever since the introduction of abelian categories in the 1950s as a categorical
abstraction of the properties of abelian groups and modules, there has been
the wish to find a similar framework that nicely reflects the properties of (not
necessarily abelian) groups, rings and algebras.

Over the years, several attempts at such an abstract framework have been
made: worth mentioning here is the work of Higgins [24], Huq [26] and R.-
Grandjean [32], see [27] for an exhaustive list. Since none of these attempts
were entirely successful, and furthermore the connections between them were
not clear, some of these approaches were not further developed or even given a
name. In 1999, Janelidze, Marki and Tholen realised that Barr-ezactness [2],
combined with the concept of Bourn-protomodularity [5], provides a context
which simplifies and unifies the above-mentioned “old” axiom systems, and in
which the relationships with modern categorical algebra can be explored.

Expressed in terms of “new” axioms, a semi-abelian category is a pointed
category which is Barr-exact and Bourn-protomodular with finite sums. Ex-
amples of semi-abelian categories are abundant and ubiquitous. In particular,
we may find many of the non-associative and non-commutative algebraic struc-
tures studied in the literature [3], including all those that have an underlying
group structure. More precisely, any pointed variety of algebras which has
amongst its operations and identities those of the theory of groups is semi-
abelian.

One of the advantages of this categorical framework is that it allows a
unified study of many important homological properties. For instance, in any
semi-abelian category, the classical diagram lemmas (the Short Five Lemma,
the 3 x 3 Lemma, the Snake Lemma, Noether’s Isomorphism Theorems) hold.
As seen in [34], the theory of semi-abelian categories is perfectly suited for the
study of non-abelian (co)homology and the corresponding homotopy theory,
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unifying many basic aspects of the classical (co)homology theories of groups,
Lie algebras and crossed modules.

From an algebraic point of view, the cohomology theory of Lie algebras was
introduced in [I1], aiming to give an algebraic construction of the cohomology
of topological spaces of compact Lie groups. It was very much studied through
the years and extended to other related structures, such as crossed modules
of Lie algebras [8, [7], Lie superalgebras [31], Lie-Rinehart algebras [25], 33],
Leibniz (super)algebras [28], n-Lie algebras [1], n-Leibniz algebras [9], etc.

The theory of non-associative algebras is strongly related to different areas
of mathematics and it has many applications in physics, mechanics, biology
and other sciences. Foremost amongst them are the theories of Lie and Jordan
algebras, which have had an enormous relevance in the past century. The
study of non-associative algebras encompasses the theory of not necessarily
associative R-algebras (with associative algebras being an important special
case), where R may be a ring or a field. The problems arising in these topics are
of various kinds, such as the study of solvability and nilpotency, classifications,
characterisations, relations with differential geometry and manifolds, etc.

The objective of this dissertation is twofold: firstly to use categorical and
algebraic methods to study homological properties of some of the aforemen-
tioned semi-abelian, non-associative structures and secondly to use categorical
and algebraic methods to study categorical properties and provide categorical
characterisations of some well-known algebraic structures. On one hand, the
theory of universal central extensions together with the non-abelian tensor
product will be studied and used to explicitly calculate some homology groups
[10, 12, 17, 19, 18] and some problems about universal enveloping algebras
and actions will be solved [I4} [I5] [6, 20]. On the other hand, we will focus
on giving categorical characterisations of some algebraic structures, such as
a characterisation of groups amongst monoids [16], of cocommutative Hopf
algebras amongst cocommutative bialgebras [22] and of Lie algebras amongst
alternating algebras [21].

Since each chapter will have an explicit and fully detailed introduction it
does not seem necessary to overextend this first general overview. It is worth
mentioning here that notations might not be coherent throughout the text,
nevertheless the notation in each chapter is fully internally consistent.

The dissertation is organised as follows: In Chapter [I], the universal central
extension of a Lie-Rinehart algebra is described and related with the generali-
sation of Ellis’s non-abelian tensor product [13] of Lie algebras to Lie-Rinehart
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algebras. Chapter [2] is devoted to introducing the non-abelian tensor prod-
uct of Lie superalgebras, relating it with universal central extensions. Here
also the low-dimensional non-abelian homology is introduced and its relation-
ship with the cyclic homology of associative superalgebras is established. In
Chapter [3{ an explicit computation of Hp (sl(m,n, A)) and Hy (st(m,n, A)) is
obtained, where A is a superalgebra and 3 < m + n < 5, and connections
with the cyclic homology of associative superalgebras are made. Later on,
these results are extended in Chapter [ to the case of superdialgebras for any
m+n = 3, with the additional interest of introducing a new method using the
non-abelian tensor product. A generalisation of Ellis’s non-abelian exterior
product [I3] to Leibniz algebras is given in Chapter |5, where it is applied to
the construction of an eight term exact sequence in Leibniz homology.

Chapter [0] is devoted to extending the notion of biderivation of Leibniz
algebras to the crossed modules setting, and to check in which situations it
behaves as the actor of the category (also called the split extension classifier
in [4]). In Chapter |7 the universal enveloping algebra of a crossed module
of Leibniz algebras is studied using new techniques. Then, it is seen as a
particular case of crossed modules of Lie algebras in the Loday-Pirashvili cat-
egory [29]. In Chapter a proper definition of the universal enveloping algebra
functor of n-Lie algebras is given, and it is proven that this functor cannot
have a right adjoint.

In Chapter [J] there is a sharpened version of the characterisation of groups
amongst monoids given by Montoli, Rodelo and Van der Linden in [30], prov-
ing that a monoid is a group if and only if all splits extensions over it are
strong. This characterisation is generalised in Chapter [I0] where the follow-
ing result is obtained: a cocommutative bialgebra over an algebraically closed
field is a Hopf algebra if and only if all splits extensions over it are stably
strong. In this chapter it is also shown that the category of (not necessarily
commutative or cocommutative) Hopf algebras is not unital, so in particu-
lar is not semi-abelian. Using Gray’s notion of locally algebraically cartesian
closed category [23], in Chapter [L1{a characterisation of Lie algebras amongst
all varieties of non-associative, alternating algebras is given. The result is a
categorical characterisation of the Jacobi identity.

Finally, Chapter is devoted to saying some words about the current
state of affairs of several works in progress that are taking shape right now,
and to mention some lines of research that may be followed when taking this
dissertation as a starting point.
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Chapter 1

Universal central extensions
of Lie-Rinehart algebras

Abstract

In this paper we study the universal central extension of a Lie-Rinehart algebra and we
give a description of it. Then we study the lifting of automorphisms and derivations
to central extensions. We also give a definition of a non-abelian tensor product in
Lie-Rinehart algebras based on the construction of Ellis of non-abelian tensor product
of Lie algebras. We relate this non-abelian tensor product to the universal central
extension.

Reference

J. L. Castiglioni, X. Garcia-Martinez, and M. Ladra, Universal cen-
tral extensions of Lie-Rinehart algebras, J. Algebra Appl.,, 2017,
doi:10.1142/S0219498818501347.

1.1 Introduction

Let A be a unital commutative algebra over a commutative ring K with unit.
A Lie-Rinehart algebra is a Lie K-algebra, which is also an A-module and these
two structures are related in an appropriate way [11]. The leading example
of Lie-Rinehart algebras is the set Derg (A) of all K-derivations of A. Lie-
Rinehart algebras are the algebraic counterpart of Lie algebroids [20].

1



2 1 Universal central extensions of Lie-Rinehart algebras

The concept of Lie-Rinehart algebra generalizes the notion of Lie algebra.
In [24] and [§] universal central extensions of Lie algebra are studied, prov-
ing that if a Lie algebra is perfect then it has a universal central extension.
Moreover, it is characterized the kernel of the universal central extension as
the second homology group with trivial coefficients. In this paper we extend
this study to Lie-Rinehart algebras.

On the other hand, in [6] a non-abelian tensor product of Lie algebras is
introduced, its more important properties are studied and it is related to the
universal central extension. It has been extended to other structures as Leibniz
algebras [9], Lie superalgebras [7] or Hom-Lie algebras [3]. In this paper we
broaden this construction to Lie-Rinehart algebras, we study some important
properties and we relate it to the universal central extension of Lie-Rinehart
algebras.

After the introduction, the paper is organized in four sections. In Sec.
we recall some needed notions and facts on Lie-Rinehart algebras, actions,
crossed modules, universal enveloping algebras, free algebras, homology and
cohomology and abelian extensions of Lie-Rinehart algebras. In Sec. fol-
lowing Neher’s paper on Lie superalgebras [21], we introduce central exten-
sions and universal central extensions of Lie-Rinehart algebras giving a char-
acterization of them (Theorem , extending classic results of Lie algebras
(see [24]). We construct an endofunctor uce that when the Lie-Rinehart al-
gebra is perfect gives explicitly the universal central extension. In Sec.
we study the lifting of automorphisms and derivations to central extensions.
Finally, in Sec. we introduce a non-abelian tensor product of Lie-Rinehart
algebras extending Ellis [6] non-abelian tensor product of Lie algebras. We
relate this non-abelian tensor product with the universal central extension.

1.2 Preliminaries on Lie-Rinehart algebras

Most of the content of this section is well known, or follows from known results
(see [4, B, [IT), 23]). We included it in order to fix terminology, notations and
main examples. In what follows we fix a unital commutative ring K. All
modules are considered over K. We write ® and Hom instead of ®x and
Homg.



1.2 Preliminaries on Lie-Rinehart algebras 3

1.2.1 Definitions, Examples

Let A be a unital commutative algebra over K. Then the set Derg(A) of all
K-derivations of A is a Lie K-algebra and an A-module simultaneously. These
two structures are related by the following identity

[D,aD’] = a[D,D'] + D(a)D’, D,D' €Derg(A).

This leads to the notion below, which goes back to Herz under the name
“pseudo-algebre de Lie” and which is the algebraic counterpart of the Lie
algebroid [20].

Definition 1.2.1. A Lie-Rinehart A-algebra consists of a Lie K-algebra L
together with an A-module structure on L and a morphism, called the anchor
map,

a: L — Derg(A),

which is simultaneously a Lie algebra and A-module homomorphism such that

[, ay] = a[z,y] + z(a)y.

Here z,y € L, a € A and we write z(a) for a(x)(a) [II]. These objects are
also known as (K, A)-Lie algebras [23] and d-Lie rings [22]. As stated in the
literature ([10] for example), if L is a faithful A-module, the requirement of «
being a Lie homomorphism follows from the other axioms.

Thus Derg (A) with a = ldpey, (o) is a Lie-Rinehart A-algebra. Let us
observe that Lie-Rinehart A-algebras with trivial homomorphism «: L —
Deryx(A) are exactly Lie A-algebras. Therefore the concept of Lie-Rinehart
algebras generalizes the concept of Lie A-algebras. If A = K, then Der g (A)=0
and there is no difference between Lie and Lie-Rinehart algebras. If L is an
A-module, then L is a trivial Lie-Rinehart A-algebra, that is L itself endowed
with trivial Lie bracket and trivial anchor map.

If L and L’ are Lie-Rinehart algebras, a Lie-Rinehart A-algebra homomor-
phism f: L — L' is a map, which is simultaneously a Lie K-algebra homo-
morphism and a homomorphism of A-modules. Furthermore it has to preserve
the action on Derg(A), in other words the diagram




4 1 Universal central extensions of Lie-Rinehart algebras

commutes. We denote by LRa i the category of Lie-Rinehart A-algebras. We
have the full inclusion
Liep < LRak,

where Liep denotes the category of Lie A-algebras.

It is important to see that the product in this category is not the cartesian
product. For two Lie-Rinehart algebras L and M, the product in LRag is
L Xpereay M = {(I,m) € L x M | l(a) = m(a) for all a € A}, where L x M
denotes the cartesian product, with the action (I,m)(a) = l(a) = m(a) for
all @ € A. Also note that the initial object is 0 but the terminal object is
Derx (A), then it does not have zero object (unless K = A). This means that
in general it is not a semi-abelian category in the sense of [I5]. When we speak
about a short exact sequence I — E — L in LRjg, we mean that the first
homomorphism is injective and the second is surjective.

Let L be a Lie-Rinehart A-algebra. A Lie-Rinehart subalgebra M of L is a
K-Lie subalgebra which is an A-module, with action induced by the inclusion
in L. If M and N are two Lie-Rinehart subalgebras of L, we define the com-
mutator of M and N, denoted by {M, N} as the span as an A-module of the
elements of the form [z,y] where z € M and y € N. Given a subalgebra M
of L we say that it is a quasi-ideal if M is K-Lie ideal of L. Moreover, if the
anchor map restricted to M is trivial, we will call it an ideal. In this way we
have a correspondence between kernels of Lie-Rinehart homomorphisms (nor-
mal subobjects) and ideals. Another example is the centre of a Lie-Rinehart
algebra, defined by

Za(L) ={xe L |[ax,z] =0 and z(a) =0, forallae A,z € L}.

Note that L or {L, L} are quasi-ideals of L but they are not necessarily
ideals of L. We denote by L*" the A-module L/{L, L}.

Example 1.2.2. The space of sections of a Lie algebroid is a Lie-Rinehart
algebra (see [20]).

Example 1.2.3. If g is a K-Lie algebra acting on a commutative K-algebra
A by derivations (that is, a homomorphism of Lie K-algebras v: g — Derg (A)
is given), then the transformation Lie-Rinehart algebra of (g,A)is L =A®g
with the Lie bracket

[a®g,d ®4'] = ad' ®g,9'] + av(9)(d") ® ¢ — a'v(g')(a) ® g,
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where a,a’ € A, g,g' € g and the action a: L — Derg(A) is given by a(a ®
9)(a’) = ay(g)(d).

Example 1.2.4. Let M be an A-module. The Atiyah algebra Axq of M is the
Lie-Rinehart A-algebra whose elements are pairs (f, D) with f € Endg (M)
and D € Derg (A) satisfying the following property:

flam) =af(m)+ D(a)m, a€A,me M.
A is a Lie-Rinehart A-algebra with the Lie bracket

[(va)v (flaD/)] = ([f7 f/]a [DvD/])
and anchor map (f, D) — D (see [16]).

Example 1.2.5. Let R be an associative algebra and Z(R) its centre (i.e. the
elements z € R such that zr = rz for all r € R). Then Derg(R) is a Lie-
Rinehart algebra over Z(R) where the anchor a: Derg(R) — Derg (Z(R))
maps each derivation to its restriction in Z(R) (see [18]).

Example 1.2.6. Consider the K-algebra of dual numbers,
A =Kle] = K[X]/(X?) = {c1 + coe | e1, 02 € K, % = 0}.
We can endow to A with the Lie algebra structure given by the bracket:
[c1 + cog, &) + che] = (c1cdh, — cac))e, 1 + o8, c) + che € A.

Thus A is a Lie-Rinehart A-algebra with anchor map a: A — Derg(A), ¢1 +
coe — ad,, where ad., (¢} + che) = [c1, ] + che] is the adjoint map of ¢;.

Example 1.2.7. For a Lie-Rinehart algebra L, the A-module L @ A with the
bracket

[(z,a), (2',a")] = ([z,2'],2(d") — 2'(a)),
and anchor map &: L ® A — Derg(A),a(x,a) = ar(x) is a Lie-Rinehart

algebra.

Example 1.2.8. Let us recall that a Poisson algebra is a commutative K-
algebra P equipped with a Lie K-algebra structure such that the following
identity holds

[a,bc] = bla, c] + [a, b]c, a,b,ce P.
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There are (at least) three Lie-Rinehart algebras related to P. The first one
is P itself considered as a P-module in an obvious way, where the action
of P (as a Lie algebra) on P (as a commutative algebra) is given by the
homomorphism ad: P — Der(P) given by ad(a) = [a,—] € Der(P). The
second Lie-Rinehart algebra is the module of Kihler differentials QL. It is
easily shown (see [II]) that there is a unique Lie-Rinehart algebra structure
on O} such that [da, db] = d[a, b] and such that the Lie algebra homomorphism
QL — Der(P) is given by adb — a[b, —]. To describe the third one, we need
some preparations. We put

ngoiss(P7 P) = {a’ ep | [a7 _] = 0}

Then HJ ;.. (P, P) contains the unit of P and is closed with respect to products,
thus it is a subalgebra of P. A Poisson derivation of P is a linear map
D: P — P which is a simultaneous derivation with respect to commutative
and Lie algebra structures. We let Derpg;ss(P) be the collection of all Poisson
derivations of P. It is closed with respect to Lie bracket. Moreover if a €
HP (P, P) and D € Derpyiss(P) then aD € Derpyiss(P). It follows that
Derpoiss(P) is a Lie-Rinehart HgoiSS(P, P)- algebra. There is the following
variant of the first construction in the graded case. Let Py = @,>q Pn be a
commutative graded K-algebra in the sense of commutative algebra (i.e. no
signs are involved) and assume Py is equipped with a Poisson algebra structure
such that the bracket has degree (—1). Thus [—,—]: P, ® P, = Prym—1.
Then P; is a Lie-Rinehart Py-algebra, where the Lie algebra homomorphism
P, — Der(P) is given by a1 — [a1,—], [a1,—](ap) = [a1,a0], where a; € P;,
i=0,1.

1.2.2 Actions and Semidirect Product of Lie-Rinehart alge-
bras

Definition 1.2.9. Let L € LRyg and let R be a Lie A-algebra. We will say
that L acts on R if it is given a K-linear map

L®R— R, (x,r)—xor, zeLreR
such that the following identities hold

(1) zo(ar)=alxor)+ z(a)r,



1.2 Preliminaries on Lie-Rinehart algebras 7

(2) [z,y]or=x0(yor)—yo(zor),
(3) xo[r, 7] =[zor,r| +[r,xor],
(4) axor =a(xor),

where a € A, z,y € L and r,7’ € R.

Let us observe that (2) and (3) mean that L acts on R in the category of
Lie K-algebras.

For a Lie-Rinehart algebra L and a Lie A-algebra R on which L acts we
can form the semidirect product L x R in the category of Lie K-algebras, which
is L ® R as a K-module, equipped with the following bracket

[(l’,’l“), (yv TJ)] = ([$7y]7 [’I", T/] +xor — yo "")7

where 2,y € L and 7,7’ € R. With the A-module structure given by a(z,r) =
(ax,ar) and the anchor map &(z,r) = a(z) it has a Lie-Rinehart algebra
structure, as seen in [4]. Observe that Example is a particular case.

Definition 1.2.10 ([22]). A left Lie-Rinehart (A,L)-module over a Lie-
Rinehart A-algebra L is a K-module M together with two operations

LM — M, (x,m) — xm,

and

AQM —> M, (a,m) — am,

such that the first one makes M into a module over the Lie K-algebra L in
the sense of the Lie algebra theory, while the second map makes M into an
A-module and additionally the following compatibility conditions hold

z(am) = a(zm) + x(a)m, aeA,me M and z € L.

This definition can be seen as a particular case of Definition where
M is an abelian Lie A-algebra. Notice that a left Lie-Rinehart (A, L)-module
is equivalent to give a morphism of Lie-Rinehart A-algebras L — Axq (see

Example |1.2.4)).

It is easy to see that A is a left Lie-Rinehart (A, L)-module for any Lie-
Rinehart algebra L given by the anchor.
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Definition 1.2.11 ([I3]). A right Lie-Rinehart (A, L)-module over a Lie-
Rinehart A-algebra L is a K-module M together with two operations

ML — M, (m,z) — mz,

and

AQM — M, (a,m) — am,

such that the first one makes M into a module over the Lie K-algebra L in
the sense of the Lie algebra theory, while the second map makes M into an
A-module and additionally the following compatibility conditions hold

(am)xz = m(ax) = a(mzx) — z(a)m, aceA,meM and z € L.

Remark 1.2.12. The differences between the definitions of left and right (A, L)-
module are significantly large. While in Lie algebras left and right L-modules
are equivalent, in Lie-Rinehart that is not true. Concretely, A has a canonical
left (A, L)-module structure but it does not hold a canonical right (A, L)-
module structure. See [12] for a characterization of right (A, L)-module struc-
tures and see [19] for a concrete example.

1.2.3 Crossed Modules of Lie-Rinehart algebras

A crossed module 0: R — L of Lie-Rinehart A-algebras (see [4]) consists of a
Lie-Rinehart algebra L and a Lie A-algebra R together with the action of L on
R and the Lie K-algebra homomorphism ¢ such that the following identities
hold:

1. d(xor)=x,dr)],

(
2. () or = [1,1],
3. o(ar) = ad(r),
4. 0(r)(a) = 0,

forallae A,r€ R and x € L.
We can see some examples of crossed modules of Lie-Rinehart algebras.

1. For any Lie-Rinehart homomorphism f: L — R, the diagram Ker f — L
is a crossed module of Lie-Rinehart algebras.
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2. If M is an ideal of L, the inclusion M < L is a crossed module where
the action of L on M is given by the Lie bracket.

3. If R is a left Lie-Rinehart (A, L)-module, the morphism 0: R — L is a
crossed module.

4. If 9: R — L is a central epimorphism (i.e. Kerd < Z(R)) from a Lie
A-algebra R to a Lie-Rinehart algebra L, @ is a crossed module where
the action from L to R is given by x or = [/, 7], such that o(r’) = x.

1.2.4 Universal enveloping algebras and related constructions

There is a K-algebra Ua L that has the property that the category of left
(resp. right) Ua L-modules is equivalent to the category of left (resp. right)
(A, L)-modules. Actually this algebra was constructed in [23]. We define the
algebra Ua L in terms of generators and relations. We have generators i(x)
for each z € L and j(a) for each a € A. These generators must satisfy the
following relations

i) =1, j(ab) = j(a)j(b),
i(ax) = j(a)i(z),

iz, y]) = i(x)i ( ) i(y)i(z),

i(z)j(a) = j(a) j(x(a)).

The first relations show that j: A — Ua L is an algebra homomorphism.
Notice that in case of a trivial anchor one obtains the universal enveloping
algebra of L as a Lie A-algebra.
We let V,, be the A-submodule spanned on all products i(zq)---i(xg),
where k < n. Then

OcA=VycVic.---cV,c---cUalL

defines an algebra filtration on Up L. It is clear that Ua L = Up>oVn. It
follows from the third relation that the associated graded object gr, (V) is
a commutative A-algebra. In other words Ua L is an almost commutative
algebra in the following sense.

An almost commutative algebra is an associative K-algebra C together
with a filtration

OcAzCocClcu-chcu-chUC’n

n=0
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such that C,Cy,, © Cy1m and such that the associated graded object gr, (C) =
@10 Cn/Cn-1 is a commutative A-algebra.

Remark 1.2.13. If C' is an almost commutative algebra, then there is a well-
defined bracket

[_7 _] : grn(c) ® grm(C> - grn-‘rm—l(c)

which is given as follows. Let a € gr,(C) and b € gr,,(C) and a € C, and
b e C,, be representatives of a and b. Since gr, (C) is a commutative algebra
it follows that @b — ba € Cym—1 and the corresponding class in gr,, +m-1(C)
s [a,b]. In this way we obtain a Poisson algebra structure on gr,(C). Since
the bracket is of degree (-1) it follows from Example that L = gr (C) is
a Lie-Rinehart A = gry(C)-algebra. Moreover the short exact sequence

A—-Cy—L
is an abelian extension of Lie-Rinehart algebras (see below Definition |1.2.18)).

Proposition 1.2.14. The correspondence assigning C1 to the almost commu-
tative algebra C, defines a functor LR: ACommp — LRa k.

Proof. Let f: C — D be a morphism in AComma. Since f preserves the
filtration, f(C1) < D;. Furthermore, f(az) = f(a)f(x) = af(x), for any
aeCy= Dyand zeCr, and f([z,y]) = f(zy— ) = F(2)F(y) — F5) f(x) =
[f(z), f(y)], for z,y € Cy. Hence the restriction of f to Cj, which we shall
call LR(f), is a morphism of K-Lie algebras and of A-modules such that the
following diagram commutes in Lieg,

cy LR(f) D,

[077] [Ozf]
Derg (A).

Thus, LR(f) € LRak.
On the other hand, it is clear that LR(1¢,) = 1¢, and the following dia-
gram commutes in K-mod,

f g

T v g
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Hence LR is functorial. ]

Proposition 1.2.15. The functor LR is right adjoint to the universal en-
veloping functor Ua : LRax — ACommpy .

Proof. Let ®: ACommp (Ua L, C) — LRyk (L, LR(C)) be the map given as fol-
lows. Since Ua L is generated as a K-algebra by L and A, a morphism
f: Ua L — C is completely determined by its restriction to L and A. Since
f(a) = a for every a € A, and f(L) = f((Ua L)1) = Cy, it follows that the
restriction of f to L, ®f: L — C; = LR(C) is a morphism of Lie-Rinehart
algebras and ® is a monomorphism.

Let g: L — C7 be a morphism in LRyx. We build up g: Ua L — C by
glaxy - xy) = ag(x1) -+ g(zm) € C. Tt is straightforward to see that g is a
morphism in ACommp and ®g = g. Hence ® is bijective, and U and LR form
an adjoint pair. O

There is another way to understand the universal enveloping algebra as an
adjunction. We consider the category Anca of anchored algebras, defined as
A-algebras B equipped with an A-algebra morphism «: B — End(A), where
the A-algebra structure on End(A) is given by a +— (l;: ' — aa’) and we
construct a functor from Anca to LRa g that sends an anchored algebra B to
the A-submodule consisting of those elements b € B such that a(b) € Derx(A).
Then this functor is left adjoint to the universal enveloping functor (see [I]).

1.2.5 Free Lie-Rinehart Algebras

Here we follow [5]. Let xmod/Derk(A) be the category of K-linear maps
¥:V — Derg(A), where V is a K-module. We have the functor

U:LRag — Kmod/DerK(A)
which assigns a: L — Derg(A) to a Lie-Rinehart algebra L. A morphism
¥ — 11 in kmod/Derk(A) is a K-linear map f: V — Vi such that ¢ = ¢y f.
Now we construct the functor

F: xkmod/Derk(A) — LRk

as follows. Let ¢: V — Derg(A) be a K-linear map. We let L(V) be the
free Lie K-algebra generated by V. Then we have the unique Lie K-algebra
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homomorphism L(V) — Derg(A) which extends the map v, which is still
denoted by 1. Now we can apply the construction from Example to get
a Lie-Rinehart algebra structure on AQL(V'). We let F(¢) be this particular
Lie-Rinehart algebra and we call it the free Lie-Rinehart algebra generated by
1. In this way we obtain the functor F', which is the left adjoint to U.

Kapranov [I7] defines a different concept of free Lie-Rinehart algebra as
the adjoint of the forgetful functor U’: LRy g — amod/Derk(A). The relation
between both constructions is given in [I7, (2.2.8) Proposition].

1.2.6 Rinehart homology and cohomology of Lie-Rinehart al-
gebras

Let M be a left Lie-Rinehart (A, L)-module. Let us recall the definition of the
Rinehart cohomology H;, (L, M) of a Lie-Rinehart algebra L with coefficients
in a left Lie-Rinehart module M (see [22, 23] and [0, [11]). We put

CR (L, M) := Homp (AR L, M), n =0,

where A% (V) denotes the exterior algebra over A generated by an A-module
V. The coboundary map

§: Cv N (L, M) — CR(L, M),
is given by

G @1, mn) = 2 (DD (. ds 7))

i=1
+ TV (g, ) 2, T T,
i<k

where z1,...,2, € L,me M, f € Ci (L, M).

We note that the differential § is not A-linear unless L acts trivially on A.

For any left Lie-Rinehart (A, L)-module M, the Lie-Rinehart cohomology
is defined by

Hgin (L, M) = H"(CR(L, M)), n = 0.

Let M be a right Lie-Rinehart (A, L)-module. Let us recall the defini-
tion of the Rinehart homology HR"(L, M) of a Lie-Rinehart algebra L with
coefficients in a right Lie-Rinehart module M. We put

Ch (L, M) = M®@sALL, n = 0.
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The boundary map
0: CnA(L7M) - Cré—l(LvM%

is given by

8(m®A (x1,... ,a:n)) = Z(—l)(ifl) max; QA (T1,..., Liy ooy Tn)

i=1
+ Z(_1>j+km®A ([a?j,:ck],xl,...,afj,...,:sz,...,xn),
Jj<k

where x1,...,2, € L,m € M.
We note that the differential 0 is not A-linear unless L acts trivially on A.
For any right Lie-Rinehart (A, L)-module M, the Lie-Rinehart homology
is defined by
H¥™NL, M) = H, (CX(L,M)),  n=0.

Let g be a Lie algebra over K and let M be a g-module. Then we have the
Chevalley-Eilenberg chain and cochain complexes CX¢(g, M) and C§, (g, M),
which compute the Lie algebra (co)homology (see [2]):

Cy(g, M) = A™(g) @ M,
Cﬂie(gaM) = Hom(A”(g),/\/l)

Here A* denotes the exterior algebra defined over K.

One observes that if A = K, then H}M"(L, M) and Hf; (L, M) generalize
the classical definition of Lie algebra (co)homology.

For a general A by forgetting the A-module structure one obtains the
canonical homomorphisms

H:I:ie(L7M) — HBin(L7M)7 Hlﬂim(LvM) - HfiE(L’M)’

where HY(L, M) and Hf,.(L, M) denote the homology and cohomology of L
considered as a Lie K-algebra. On the other hand if A is a smooth commuta-
tive algebra, then Hp, (Der(A), A) is isomorphic to the de Rham cohomology
of A (see [23] and [I1]).

Lemma 1.2.16. Let g be a Lie K-algebra acting on a commutative algebra A
by derivations and let L be the transformation Lie-Rinehart algebra of (g, A)
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(see Ezample[1.2.5). Then for any (right or left, depending on the situation)
Lie-Rinehart (A, L)-module M we have the canonical isomorphisms of com-
plezes C2(L, M) = CY¢(g, M), C%(L, M) = CF, (g, M) and in particular the

isomorphisms
H™ (L, M) = H*(g, M),
Hlék{in(La M) = Hﬁie(ga M)

Proof. Since L = A®g we have AR L& M = A"g®M and Homa (AR L, M)
Hom(A™g, M) and lemma follows.

e

Proposition 1.2.17. Let L be a free Lie-Rinehart algebra generated by
: V. — Derg(A) and let M be any (right or left, depending on the situa-
tion) Lie-Rinehart (A, L)-module. Then

HR (L, M) =0, n>1,
Hp (L, M) =0, n> 1.

Proof. By our construction L is a transformation Lie-Rinehart algebra
of (L(V),A). Thus we can apply Lemma to get isomorphisms
HRO(L, M) =~ HE(L(V), M) and HE, (L,M) =~ Hf (L(V), M) and then
we can use the well-known vanishing result for free Lie algebras (see [25]). O

1.2.7 Low degree homology groups of Lie-Rinehart algebras

Here we follow [5]. By definition, H{"(L, M) = %, is the module of
coinvariants of M, where M oL means the K-submodule of M generated by
mzx, € Lyme M, and HY,,(L, M) = M¥ = {me M | zm =0 for allz € L},
is the invariant K-submodule of M.

It follows from the definition that one has the following exact sequence

0 — HYy\ (L, M) > M -4 Derp (L, M) — Hh (L,M) >0, (1.2.1)

where Derp (L, M) consists of A-linear maps d: L — M which are derivations
from the Lie K-algebra L to M. In other words d must satisfy the following
conditions:
d(az) = ad(x),
d([z,y]) = z(d(y)) —y(d(=)), a€A, zyeL
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If m €e M, the map dn,,: L — M,z — xm, is a derivation. The
maps d,, are called inner derivations of L into M, and they form an
K-submodule IDers(L, M) of Dera(L,M). By (L2.1), Hp,(L,M) =
Dera (L, M)/IDers (L, M).

If M is a trivial (A, L)-module, then H}, (L, M) =~ Dera(L, M) =
Homa (L, M) and Hf'™ (L, M) = EEALL ~ M@ L™,

1.2.8 Abelian extensions of Lie-Rinehart algebras

Definition 1.2.18. Let L be a Lie-Rinehart A-algebra and let M a left Lie-
Rinehart (A, L)-module. An abelian extension of L by M is a short exact
sequence

ML L
where L is a Lie-Rinehart A-algebra and ¢ is a Lie-Rinehart algebra homo-
morphism. Moreover, i is an A-linear map and the following identities hold

[i(m),i(n)] =0,
[i(m),2'] = (d(z"))(m), m,neM, 2’ e L.
An abelian extension is called A-split if 0 has an A-linear section.

Proposition 1.2.19 ([II, Theorem 2.6]). If L is A-projective, then the coho-
mology Hﬁin(L,M) classifies the abelian extensions

M—L —1L

of L by M in the category of Lie-Rinehart algebras that split in the category
of A-modules.

The extension M — L @® M — L represents 0 € H3,, (L, M).

1.3 Universal central extensions of Lie-Rinehart al-
gebras

1.3.1 Central extensions

An extension of a Lie-Rinehart algebra L is a short exact sequence

IS E-2 0, (1.3.1)
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where I, ¥ and L are Lie-Rinehart algebras and i, p are Lie-Rinehart homo-
morphisms. Since i: I — i(I) = Kerp is an isomorphism we shall identify
and ¢(]). In other words, an extension of L is a surjective Lie-Rinehart homo-
morphism p: £ — L. If p: E — L and p’: £’ — L are two extensions of L, a
homomorphism from p to p’ is a commutative diagram in LRp g of the form

E%E’

L.

In particular,
Kerf < f1(Kerp') =Kerp and E' = f(E) + Keryp/. (1.3.2)

An extension is called split if there exists a Lie-Rinehart morphism
s: L — E, called splitting homomorphism, such that ps = 17. In this case,
E = I®s(L) and s: L — s(L) is an isomorphism with inverse p[,z). Moreover,
E ~ I x L, the semidirect product. In this way, semidirect products and split
exact sequences are in a one to one correspondence. We point out that not
every extension splits. We shall say that an extension splits uniquely whenever
the splitting morphism is unique.

A central extension of L is an extension p such that Kerp € Zo(E). In
S

particular, if p: E 9 L is a split central extension, it is a product of

K-Lie algebras E = Kerp x L, which is also a Lie-Rinehart algebra.

Proposition 1.3.1. If L is A-projective, then HE; (L, ) classifies the central
extensions
I—F—1L

of L by I.
Proof. Note that, if I is a trivial left Lie-Rinehart (A, L)-module, then an

abelian extension of L by I is a central extension, and so the assertion follows
by Proposition [1.2.19 O

In the A-projective case, the study of central extensions of Lie-Rinehart
algebras can be seen as central extensions of Lie algebras, as we show in the
next proposition.
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Proposition 1.3.2. Let I = A - a(L)(A) be the ideal generated by the action
of the anchor map on A. Then L = L/IL is a Lie algebra over A = A/I, and
there is an equivalence of categories between on the one hand central extensions
of the Lie-Rinehart algebra L that split as A-modules, and on the other hand
central extensions of the A-Lie algebra L = L/IL.

Proof. If Kerp——F 25 L isan A-split central extension, then centrality
of Kerp implies I - Kerp = {0}. Now I - L c L is an ideal of K-Lie algebras,
making L = L/IL a Lie-Rinehart algebra over A with trivial anchor map,
that is, an A-Lie algebra. Since p is A-split, we obtain a central extension

Kerp—>E 5T of A-Lie algebras. Conversely, every central extension

Kerp—> FE P> T of A-Lie algebras gives rise to the pullback central exten-
sion

where E = {(z,y) € E x L | x mod Kerp = y mod IL}. The correspondences
E — E and E — E are functorial, and the natural transformations imple-
menting the equivalence are the obvious ones. O

In the rest of this section we will study the general case of central extensions
of Lie-Rinehart algebras.

A Lie-Rinehart A-algebra L is said perfect if L = {L,L}. A central ex-
tension E of L is called a covering if E is perfect; in that case, L is also
perfect.

A central extension u: £ — L is called universal if there exists a unique
homomorphism from u to any other central extension of L. From the univer-
sal property of universal central extensions it immediately follows that two
universal central extensions of L are isomorphic as extensions.

Lemma 1.3.3. (central trick) Let p: E — L be a central extension.

(a) If(pgx) zlf?()a:/) and p(y) = p(y') then [z,y] = [2',y'] and for every a € A,
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(b) If the following diagram commutes in LRa g,
9 P
P—=F—1L
f

then the restriction of both f and g to {P, P} agree; i.e. flippy = gl{p,p)-
In particular, there exists at most one homomorphism from a covering

C —— L to the central extension E LN L.

Proof. (a) We have 2/ = x + z and v/ = y + 2’ for some z, 2’ € Kerp c Za(FE),
so it is clear that [2/,y'] = [z + z,y + 2] = [z,y]. In addition, if p is a
Lie-Rinehart homomorphism, the action on Dery(A) must be preserved so
z(a) = 2'(a).

(b) Using part (a), we have g(alz,5]) = alg(x),g(s)] = alf(@), ()] =
f(alz, y]). ]

Lemma 1.3.4. Let p: E —— L be a central extension where L is perfect.
Then

(a) E={E,E}+Kerp, and p' = pl(g py: {E, E} — L is a covering.

(b) Za(E) = p~'(Za(L)) and p(Za(E)) = Za(L).
(c) If f: L — M ‘s a central extension then so is fp: B — M.

(d) If f: C — L is a covering and

E—7 sC

NS

a morphism of extensions, then g: B — C' is a central extension. In
particular, g is surjective.

Proof. (a) Since p({E, E}) = {L,L} = L it follows easily that £ = {E, E} +
Kerp and p|(g gy is clearly a covering.

(b) Let z € ZA(E). For every a € A we have [az,E] = 0, so 0 =
[ap(z),p(E)] = [ap(z), L] then p(z) € Za(L). Conversely, let z € p~1(Za(L)).
For every a € A we have p([az, E]) = [ap(z),L] = 0 so [az, E] < Kerp c
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ZA(E). Since [az,E] = [az,{E,E} + Kerp] = [az,{E, E}] we just have
to check that [az,{F,E}] is zero. Therefore, [az,b[z,y]] = blaz,[z,y]] =
blz, [az, y]] + by, [z, az]] = 0.

(c) The composition fp is clearly surjective and Ker fp = p~!(Ker f) <
P~ (Za(L)) = ZaA(E).

(d) Since C = g(E) + Ker f, see (1.3.2), we have that C = {C,C} =
{9(E),g9(E)} = g({E,E}) so g is surjective. Moreover, it is central since
Kerg < Kerp. O

Corollary 1.3.5. Let L € LRag, arbitrary. If L/Za(L) is perfect, then
ZA(L/ZA L) = 0.

Proof. It can be seen applying the second formula of Lemma b) to the
canonical map p: L —> L/Za (L), which is a central extension. O

Lemma 1.3.6. (pullback Lemma) Let c: N — M be a central extension
and f: L — M a morphism of Lie-Rinehart algebras, then,

Pi={(l,n) € L Xper,c(a) N | f(I) = c(n)}

is a Lie-Rinehart algebra and pr,: P — L, (I,n) — [, is a central extension.
This extension splits if and only if there exists a (unique) Lie-Rinehart mor-
phism h: L — N such that ch = f.

PN
P——
A

: =7
s \LPL o
Y
L———>
f

=

c

<

S

Proof. 1t is clear that P is a Lie-Rinehart algebra with action (I,n)(a) = l(a) =
n(a), and py, is a central extension. Moreover, a splitting homomorphism
s: L — P exists (uniquely) if and only if there exists a (unique) Lie-Rinehart
homomorphism h: L — N such that s(I) = (I, (1)) for all [ € L. O

Theorem 1.3.7. (characterization of universal central extensions)
For a Lie-Rinehart algebra L, there are equivalent:

1. Every central extension L' — L splits uniquely.
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2. 1p,: L — L is a universal central extension.

Moreover, if u: L — M 1is a central extension, then and are
equivalent to

3. u: L — M is a universal central extension of M.
In this case we also hawve,

(a) both L and M are perfect and
(b) Za(L) = w1 (Za(M)), u(Za(L)) = Za(M).

Proof. By definition, (1) is equivalent to (2). Suppose that (3) holds, we want
to prove (a). Let be the product as K-Lie algebras L x L/{L, L}. In this case,
this is actually a Lie-Rinehart algebra, with the usual operations and action
(x,y + {L,L})(a) = z(a), because

al(z,y +{L,L}), (", + {L, L})] = (a[z,2"],0),

(z,y +{L,L})(a)(@",y' + {L,L}) = (z(a)a’, x(a)y’ + {L, L})
= (z(a)’, [z, ay'] — alz,y'] + {L, L}) = (z(a)2’,0),

and therefore

[(z,y +{L,L}),a(a’,y" + {L, L})] = (a[z,2'],0) + (z(a)2’, 0).

Now we can define the central extension u: L x L/{L,L} — M, and two

maps f and g

"X LiL L}

where f(z) = (z,x + {L,L}) and g(x) = (z,0). Since u is universal, f and g
must be equal, so L/{L,L} = 0. By the surjectivity of u, M is perfect too.
The assertion (b) is consequence of Lemma [1.3.4|(b).

We can prove now (3) = (1). Let f: L' — L be a central extension. By
Lemma M( ) uf is a central extension too, so by the universality of u, there
exists g: L — L’ such that ufg = u and by Lemma[1.3.3(b) fg = 1.

To show (1) = (3), for a central extension f: N — M we construct
as in Lemma [[.3.6] the central extension pr. Since pr splits uniquely, by
Lemma there exists a unique map h: L — N such that fh = u. O
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Corollary 1.3.8. Let f: E — L and g: L — M be central extensions. Then
gf: E — M is a universal central extension if and only if f is a universal
central extension.

Proof. The extension gf is central because E is perfect, so we can apply
Lemma [1.3.4]c). Hence, f is universal if and only if 15: E — E is universal,
if and only if gf is universal. O

In the following corollary we assume that the perfect Lie-Rinehart algebras
have universal central extensions, although in the next subsection we will prove
that it is always the case.

Corollary 1.3.9. Let L and L' be perfect Lie-Rinehart algebras, with universal
central extensions u: L — L and w': L' — L' respectively. Then

L/ZA(L) ~ L//ZA(L/) — L=~/

Proof. Given the diagram

L “ L u L/ZA(L)

a |+

L I —— I/ Za (L),

we assert that ¢ exists and is an isomorphism if and only if ¢ exists and is
an isomorphism. Since 7u and 7'y’ are universal central extensions by Corol-
lary and L/Za (L) is isomorphic to L'/ Za (L"), by the uniqueness of the
universal central extension, £ =~ £’. Conversely, by Corollary L/7A(L)
is centreless. By Lemma [1.3.4(b) Zo(L) = Ker(mu) and Za (L") = Ker(x'W/).
Therefore, Ker(m'u/'¢) = ¢! (Ker(z'w')) = ¢ (Za(L")) = Za(L) = Ker(ru).
Since mu and 7'u’¢ are surjective, ¢ exists and is an isomorphism. O

Note that the results obtained in this section generalize classic results of

Lie algebras (see [24] and [25]).

1.3.2 The functor uces

Let L be a Lie-Rinehart A-algebra. We denote by Sa(L) the A-submodule of
A ®x L ®x L spanned by the elements of the form
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l. a®Qzr®x

[\)

L aRTRQY+FaRQURx

3. a®zr®[y, 2] +a®Ry®|[z, 2] + a® 2 ® [z, y]

4 a@[z,yl @[, y] + [2,9](a) ®2' Q@Y - 1@ [z, y] @ alz’, y/]
with z,2’, 9,9,z € L and a € A, and put
uceal := A®x L®K L/Sa(L).

We shall write (a,z,y) = a®z ®y + Sa(L) € ucea L.
By construction, the following identities hold in uces:

L. (a,x,y) = _(a7y’x)7
2. (CL,CC, [y,z])—i—(a,y, [Z,CC])-l—((L,Z, [xvy]) =0,
3. (L, [z,yl,al’, y]) = (a, [z,y], [« ¥/]) + ([2,y](a), 2",1/).

The map of A-modules AQx L&k L — L, determined by (a, z,y) — az,y],
vanishes on Sa (L) and hence descends to a linear map

u: uceal — L.

Note that

Keru = {Z(aiyl'iayi) | Zaz’[l?z',yi] = 0}-

It is an easy but tedious calculation to see that the module ucea I becomes a
Lie-Rinehart algebra with the product

[(a,z,y), (d,2",y")] =(ad', [z, y], [, ¥']) + (alz,y](d'), 2", ¥)
- ([I", y/](a)a/7 xz, y):

and action
(@, 2,9)(b) = alz, y](b).
It then follows that u: uceal — {L, L} is a central extension of {L, L}. In
the case A = K, we recover the well-known central extension uce L — [L, L]

of Lie algebras, where uce L denotes the universal central extension of L in the
category of Lie algebras.
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Let f: L — M be a Lie-Rinehart homomorphism. The A-module mor-
phism 15 ®x f ®x f: SA(L) — Sa(M) induces an A-linear map

ucep (f): uceal — ucea M, (a,z,y) — (a, f(z), f(y)).

Note that the following diagram commutes by construction,

ucea (f)

uceal ——————>ucea M (1.3.3)
UL\L luM
L M .
f

To check that ucea f is a morphism it suffices to show that

uceA(f)([(a, €L, y)7 (a/’ 5137/ Y, )]) = [uceA(f)(aa €L, y)v uceA(f)(a’, ZL'/, y,)]a
which since f is a Lie-Rinehart homomorphism, we have that
a[z,y](a’) = flalz,y])(@') = alf(z), f(y)](d')
and the proof follows immediately.

Proposition 1.3.10. Let f: L — M be a morphism of Lie-Rinehart algebras
and suppose that g: M’ — M is a central extension. Then there exists a
homomorphism §: ucea L — M’, making the following diagram commutative

uceAL%M’ (1.3.4)

— > M.
L 7 M

The map | is wuniquely determined on the commutator subalgebra
{ucepa L, ucep L} by the commutativity of (1.3.4)).

Proof. Let s: M — M’ a section of g in Set. The map s may not be linear but
we know that s(km) — ks(m) € Kerg € Zo(M') and s(m +n) —s(m) —s(n) €
Kerg c Za(M') for k € K and m,n € M. Using this, we claim that the map

AxLxL I, M’
(a,2,y) — a[sf(x), sf(y)],
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is bilinear, since

alsf(kx),sf(y)] = alsf(kx) — ksf(x) + ksf(x),sf(y)] = alksf(x),sf(y)].

The other property follows in the same way. By the universal property of
tensor product, f defines a unique map between A ®x L ®x L and M’. In
addition, the map is zero in Sx(L), so it can be extended to f: ucea L — M,
making the diagram commutative. It also preserves the anchor map because
the section s must preserve it too. Using the property that a[z,y](a’) =
f(a[z,y])(a’) = a[f(x), f(y)](a’), it follows immediately that f is a Lie algebra
homomorphism, hence it is a Lie-Rinehart algebra homomorphism that makes
the diagram commutative. The uniqueness in {ucep L, uces L} follows from

Lemma [1.3.3((b). O
Theorem 1.3.11. Let L be a perfect Lie-Rinehart algebra. Then

Keru — ucea L —— L,

s a universal central extension of L. Moreover, if L is centreless, then Keru =
ZA (uceAL).

Proof. It can be seen that uces({L,L}) < {uceaL,uceaL} < ucepaL. Thus
when L is perfect, {ucepaL,uces L} = ucep L, so applying Proposition
for every central extension f: M — L we have a unique map f: ucea L — M
making the diagram commutative. In other words, ucep L is the universal
central extension of L. O

Remark 1.3.12. In many algebraic structures as Lie algebras, Keru is the sec-
ond homology group with trivial coefficients. However, this is not possible
here since we do not have a canonical right (A, L)-module structure in A as
we have seen in Remark [[L2.12

1.4 Lifting automorphisms and derivations

Let f: L' — L be a covering. Bringing back the commutative diagram (1.3.3))
we get

o— 1 .r

gk

L’ﬁL
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where L' = ucea (L), L = ucep(L) and o’ = up/, u = uy. Since both v’ and
f are central extensions, by Corollary we know that fu': £ — L is a
universal central extension of L. By the uniqueness of the universal central
extension, we know that £’ =~ £. In addition, since f is a morphism from
the universal central extension fu’ to the central extension u, it must be an
isomorphism. Therefore, we get a covering w'f~': £ — L’ with kernel

C = Ker(Wf!) = f(Kerw).

1.4.1 Lifting of automorphisms
Theorem 1.4.1. Let f: L' — L be a covering.

(a) Let h € Aut(L). Then there exists h' € Aut(L’) such that the diagram

1. (1.4.1)

J ]

L'——1L
!
commutes if and only if ucep(h)(C) = C. Moreover, h' is uniquely

determined by the diagram (1.4.1]) and h'(Ker f) = Ker f.

(b) The group homomorphism
{h e Aut(L) | ucea(h)(C) = C} — {g e Aut(L') | g(Ker f) = Ker f}, h— K,
18 a group isomorphism.

Proof. (a) If I/ exists, it is a morphism from the covering hf to the covering f
so by Lemma m(b) it is uniquely determined by the commutativity of the
diagram . Let us suppose that h’ exists. If we apply the uces functor
to the diagram , we obtain the commutative diagram

L’%L

uceA(h’)l iuceA(h)

El?ﬁ
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In this way,

ucea (h)(C) = ucea (h) (f(Keru')) = (ucea (h) )(Keru')
h/

(Fucea (R))(Keru') = f(Keru') = C.

Suppose now that ucea (h)(C) = C. We obtain the commutative diagram

rg—1
o R SR SNy § (1.4.2)
|
uceA(h)\L \J/ \Lh
r1g—1
c—Y syt .r

If uces (h)(C) = C, the kernel of the epimorphism w/§~! o ucea(h) is C, i.e. the
kernel of w/§~!. In this way, we obtain an automorphism h’: L' — L’ such that
(1.4.2) commutes. The condition that h'(Ker f) = Ker f follows immediately

by the commutativity of (1.4.1]).
(b) The map is well defined and injective by part (a) of the theorem. Let

g € Aut(L’) such that g(Ker f) = Ker f. Tt descends to h € Aut(L) such that
fg = hf. Again by (a), g must be the lifting of h and since the lifting exists
it follows that ucea (h)(C) = C. O

Corollary 1.4.2. If L is perfect, the map
Aut(L) — {g € Aut(ucer (L)) | g(Keru) = Keru}, [ ucep(f),

is a group isomorphism. Moreover, if L is centreless, then Aut(L) =
Aut(ucea(L)).

Proof. Applying the last theorem to the covering u: ucea(L) — L, we have
that v’ is the identity map, so C' = 0 and the corollary follows immediately.
By Lemma M(b), if L is perfect we have that Keru = 7 (uceA(L)) and
since every automorphism leaves the centre invariant it is straightforward that
Aut(L) = Aut(ucea(L)). O

1.4.2 Lifting of derivations

Definition 1.4.3. Let L be a Lie-Rinehart algebra over A. A derivation of L
is a pair D := (,d9), where 6: L — L is a derivation of L as a K-Lie algebra,
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dp € Derg (A) and the following identities hold:
d(ax) = ad(x) + do(a)z,
b0(2(@)) = 2(60(a)) + 5(2)(a),

with a € A and x € L. Note that the second identity means that the following
diagram commutes,

L L

Dery(A) — > Dery(A).

[6077]

For any = € L we have an associated derivation (9, dp) where d(y) = [z, y]
and d0p(a) = z(a).

We shall write Der(L) the A-module of all derivations of the Lie-
Rinehart algebra L. Observe that Der(L), with Lie bracket [(d,dp), (8',55)] =
([6,0'], [d0,9(]) and anchor map Der(L) — Dergx(A), (5,00) — dp is a Lie-
Rinehart algebra over A. In the particular case of K = A, we recover the
notion of Lie derivation.

Recall that if (d,80) € Der(L) we have that 6(Za(L)) < Za(L), since if
z € Za(L),

[ad(z), z] = 0([az, z]) — [az, d(2)] — [do(a)z, z] = 0.

Lemma 1.4.4. Let f: L — M be a central extension of Lie-Rinehart algebras.
If (0,00) and (&',00) are derivations of L such that fo = f&' then 6|y 1y =
'L,y

Proof. Since f is a central extension, a[d(z),y] = a[0'(x),y] and a[z,d(y)] =
alz,d (y)]. Thus,

d(alz,y]) = do(a)[z, y] + a[é(x),y] + alz,d(y)]
= do(a)[z,y] + a[d'(z), y] + alz,d'(y)] = &'(alz,y]),
forallae A and z,y € L. O

Given a derivation D = (9, dg) € Der(L), one can define uces (D) = (6", do),
where ¢" is defined on generators as (a,z,y) — (dp(a),z,y) + (a,d(x),y) +
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(a,z,6(y)). It is a straightforward verification that the map uces (D) is also a
derivation of the Lie-Rinehart algebra ucea (L) and yields the following com-
mutative diagram

ucep (L) SN ucep (L)
L 5 L

leaving Keru invariant. Moreover, the map
ucep: Dev(L) — {(v,70) € Der(ucea (L)) | v(Keru) < (Keru)}, D — ucep(D),

is a Lie-Rinehart homomorphism, and its kernel is contained in the subalgebra
of those derivations vanishing on {L, L}.
In the following lemma we check how ucep operates with derivations.

Lemma 1.4.5. Let f: L — M be a morphism of perfect Lie-Rinehart algebras
and let (0r,d0) € Dex(L) and (dpr,0) € Der(M) be such that fér, = o f.
Then, we have that

ucep ()07 = oy ucea(f).

Proof. Tt suffices to check it for an element (a,z,y) € ucep(L).

ucea(f)07 (a,2,y) = ucea(f)((do(a), z,y) + (a,0r(x), y) + (a,2,dL(y)))
= (do(a), f(x), f(y)) + (a, f(Or(2)), f(y)) + (a, ( ) (5L(y)))
= (do(a), f(2), f(y)) + (a,0m (f(2)), f(y) + (a, f(2),0m (f(v)))
= oar(a, fz), f(y))
= dpucea(f)(a, z,y)

We will state now the analogue of Theorem for derivations.

Theorem 1.4.6. Let f: L' — L be a covering of the Lie-Rinehart algebra L
and as before, we denote C' = ucep (f)(Keru').

(a) A derivation D = (8,0¢) € Der(L) lifts to a derivation D' = (§',60) of L'
satisfying 6 f = fo0' if and only if the derivation 6*(C) < C. Moreover,
8’ is uniquely determined and leaves Ker f invariant.
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(b) The map

{(8,00) € Der(L) | ucea (6*)(C) = C} — {(n,m0) € Dex(L') | n*(Ker f) = Ker f}
(8,60) — (&', d0)

is an isomorphism of Lie-Rinehart algebras.
(¢) In particular, from the covering u: ucea(L) — L we obtain that the map

ucen : Der(L) — {(v,70) € Der(ucea(L)) | y(Keru) < Keru}

lle

is an isomorphism. Moreover, if L is centreless, we have that Det(L)

Der(ucea(L)).

Proof. (a) If the derivation D' = (&,80) exists, by Lemma [1.4.4] it is
unique. Using Lemma we have that §“(C) = ucep(0")(f(Keru')) =
(ucepr (6") f)(Keru') = (f o ucep(6™))(Keru') < f(Keru') = C. Conversely, if
0*(C) < C, taking the analogue for derivations of diagram , it follows
immediately.

(b) The map is well defined and injective by part (a) and surjective by
Lemma [1.4.4

(¢) We have that u' is the identity map, so C' = 0. In the case that
ZA(L) = 0, we have that Keru = Z, (ucea (L)), then Der(L) = Der(uces (L))
follows immediately, since every derivation leaves the centre invariant. O

1.4.3 Universal central extensions of split exact sequences

S
Theorem 1.4.7. Let L ! MK;\>N be a split short exact se-

quence of perfect Lie-Rinehart algebras. We have the following commutative

diagram
ag

ucep (L) ———> ucep (M) @ ucep(N)
uL\L u]\/fl \LuN
L ! M&—_——sN

where ucep (M) is a semidirect product

ucer (M) = p(ucea(L)) x o (ucea(N)),
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and

Keruy = o(Kerup) @ o(Keruy).

We know that M =~ L x N since the bottom row exact sequence splits. If
moreover M = L@ N, i.e. [f(L),s(N)] = {0}, we have

ucea (L@ N) = ucepa (L) @ uces (N).

Proof. In order to simplify the notation, we can interpret f and s as identi-
fications, so we will write [ for f(!) and n for s(n). Given an element of the
form (a,7,1) € ucea(M), with 72 € N and [ € L, by the perfectness of L and
the properties of ucea (M), we have

(a,7,1) = (a,b[n,n'],c[l,'])
= (ac,b[n,n'],[1,I']) + (ab[n,n'](c),1,1")
= (ac, [b[n,n'],1],1') + (ac, 1, [b[n, '], 1]) + (ab[n,n'|(c), 1),

which means that (A4, N, L) < (A, L, L), so ucea(M) = (A,L,L) + (A, N, N).
By definition, (4,L,L) = ¢(ucep(L)) and (A, N,N) = o(ucep(N)). Now
since ~yo is the identity map, we know that uces (M) = Ker~y x J(uceA(N)).
In this way, o (ucea(N)) = ucea (V) and since (4, L, L) < Kery it follows that
Kery = (A,L,L) = p(ucea(L)), so we have that uces (M) = ¢(ucea(L))
o(ucea(N)).

Every element of uces (M) has the form ¢(I) + o(n) where | € uces(L)
and n € ucep(N). This means that any element of uces (M) is in Keruyy if
and only if 0 = up(l) = ug(l) and 0 = upyo(n) = uy(n), so Keruy, =
w(Kerur,) @ o(Keruy).

In the particular case that M = L @ N, we can define the induced map

e@o:ucep(L) Ducepa(N) — ucep (M),

and it is an easy computation that it is a Lie-Rinehart algebra morphism.
Moreover, Ker(p @ o) = Kerp. Given | € Kery, uprp(l) = 0 = up(l) so
l € Keruy, € Za(L), which means that ¢ @ o is a covering. We can use now
Theorem (2) to see that p@o is an isomorphism completing the proof. [
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1.5 Non-abelian tensor product of Lie-Rinehart al-
gebras

A non-abelian tensor product of Lie algebras was introduced by Ellis [6]. Here
we adapt some of his results to the case of Lie-Rinehart algebras, in order
to use them to obtain a description of universal central extensions in this
category.

Definition 1.5.1. Let L, M € LRyk. By a quasi-action of L on M, we mean
a K-bilinear map, L x M — M, (z,m) — *m, satisfying

1. *(am) = a(*m) + x(a)m,
2. etk = () — ()
3. *[m,n] = [*m,n] + [m," n],

for all a € A, x,y € L and m,n € M. We will say that L quasi-acts on M.
For example, if L is a subalgebra of some Lie-Rinehart algebra £ and M is
an ideal of £ then the bracket in £ yields a quasi-action of L on M. In the
particular case of K = A, a quasi-action is the same as a Lie action.

Remark 1.5.2. The category of Lie-Rinehart algebras does not fit into the
theory of semi-abelian categories in the sense of [15] so the notion of internal
action [14] cannot be recovered. We could be tempted to add another identity
such as ““m = a(*m) (identity (4) in Definition[1.2.9), but then a Lie-Rinehart
algebra would not act on itself via the bracket. On the other hand, since the
normal subobjects are very limited (they have to be Lie A-algebras), to form
a semidirect product compatible with the notion of split extensions we recover
the notion of action of Definition but this is not useful to our proposes
since we cannot form an action over an arbitrary Lie-Rinehart algebra.

If we have a quasi-action of L on M and a quasi-action of M on L, for
any Lie-Rinehart algebra £ we call a K-bilinear function f: L x M — L a
Lie-Rinehart pairing if

1. Ozg(f(x,m)) = [ar(z), ap(m)],
2. f([z,yl,m) = f(z,Ym) — f(y,"m),
3. f(xv [m>n]) = f(nl.?m) - f(mxan)a
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4. f(a(™x),b("n)) = —ab[f(z,m), f(y,n)] — alar(z), arn (m)](b)f(y,n)
+[ar(y), am(n)](a)bf (z,m),

for all a,b € A, z,y € L, m,n € M, and where ay, ay denote the anchor
maps corresponding to L and M, respectively. If M and N are quasi-ideals
of a Lie-Rinehart algebra L, then f: M x N — M n N, (m,n) — [m,n] is a
Lie-Rinehart pairing.

We say that a Lie-Rinehart pairing f: L x M — L is universal if for any
other Lie-Rinehart pairing f': L x M — L’ there is a unique Lie-Rinehart
homomorphism ¢: £ — £’ making commutative the diagram:

LxM—2/> r

\l“’

L.

The Lie-Rinehart algebra £ is unique up to isomorphism which we will describe
as the non-abelian tensor product of L and M.

Definition 1.5.3. Let L and M be a pair of Lie-Rinehart algebras together
with a quasi-action of L on M and a quasi-action of M on L. We define the
non-abelian tensor product of L and M in LRag, L ® M, as the Lie-Rinehart
A-algebra spanned as an A-module by the symbols z ® m, and subject only
to the relations:

1. ka(x®m) = a(kxr ®m) = a(x ® km),

2.2@(m+n)=x@m+zx®n,
(x+y)@m=x@m+ym,

3. [z,y] ®m =2 ®Ym — y ® *m,
z®[m,n] ="x@m — "z ®n,

4. a(Mz) ®b(Yn) = ab("z ®Yn) — alag(x), ar (m)](0)(y @ n)
+0lar(y), anm(n)](a)(z @m),

for every k € K, a,b e A, x,y € L and m,n € M, with the induced bracket
[a(z®@m),b(y®n)] = —a(™z) ®b(Yn) and anchor map a: LR M — Derg(A)
given by a(a(z @ m)) = a[ar(z), arp(m)].
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This way, the map f: L x M — L ® M which sends (z,m) to x @ m is a
universal Lie-Rinehart pairing by construction.

Definition 1.5.4. Two quasi-actions L x M — M and M x L — L are said
to be compatible if for all x,y € L and m,n € M,

T

1. —aL(mx) = OtM( m) = [aL(LE),OéM(m)],

This is the case, for example, if L and M are both quasi-ideals of some
Lie-Rinehart algebra and the quasi-actions are given by multiplication. We
can see another example of compatible quasi-actions when 0: L — N and
0': M — N are crossed modules. In this case, L and M quasi-act on each
other via the action of N. These quasi-actions are compatible. If A = K then
we recover the notion of compatible actions between Lie algebras [6].

From this point on we shall assume that all quasi-actions are compatible.

Proposition 1.5.5. Let y: LM — L andv: LM — M be the homomor-
phisms defined on generators by p(a(x @ m)) = —a(™z) and v(a(z @ m)) =
a(*m). They are Lie-Rinehart homomorphisms and the following diagram is
commutative:

LM ——> M

O

We can relate the Lie-Rinehart tensor product L ® M with the tensor
product of L and M as an A-module. We will denote it by L ® M the

mod

A-module generated by the symbols x ® m subject to the relations
1. k(x®m) =kx®m =z ® km,

2.2@(m+n)=x@m+zx®n,
(x+y)@m=x@m+y®m,

for every k€ K, x,y € L and m,n e M.
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Proposition 1.5.6. The canonical map L ® M — L &® M 1is a surjective

mod
A-module homomorphism. In addition, if L and M quasi-act trivially on each

other, there is an isomorphism of A-modules:

L M
LM =~
OM = .2 e

where L/[L, L] and M /[M, M| denote the abelianization as K-Lie algebras.

Proof. The identity (3) of Definition is satisfied since the quasi-action is
trivial and the identity (4) is consequence of this fact and of Definition [1.5.4]
(1). O

Proposition 1.5.7. The Lie-Rinehart algebras L & M and M ® L are iso-
morphic.

Proof. The map f: L x M — M ® L which sends (z,m) > m ® x is a
Lie-Rinehart pairing, then by the universal property of L ® M there is a Lie-
Rinehart homomorphism L& M — M ® L. In a similar way, we can construct
the inverse M ® L — L ® M and establish an isomorphism. O

Proposition 1.5.8. Consider the following short exact sequence of Lie-

Rinehart algebras

L-—tsm—2sN,
and assume that there are compatible quasi-actions of a Lie-Rinehart algebra
PonL, M and N, and of L, M, N on P. Suppose also that the Lie-Rinehart
morphisms f and g preserve these quasi-actions, i.e. f(Pz) =Pf(z), *p = /@yp
and g(Pm) = Pg(m), Mp = 9 p, where x € L, m e M and p € P. Then, the
following sequence is exact

L@P&M@P&N@R with g ® 1 surjective.

Proof. Since f and g preserve the quasi-actions, it is easy to see that f ® 1
and g ® 1 are Lie-Rinehart algebra morphisms. Furthermore, the morphism
g ®1is clearly surjective, and Im(f ® 1) < Ker(g ® 1). Since gf = 0, we
have that f(x)(a) = 0 for every a € A and x € L. This means that (f ®
)(z ®p)(a) = [am(f(z)),ap(p)](a) = 0. Moreover, Im(f ® 1) is an A-
module and preserves the Lie bracket since f and g preserve the quasi-actions,
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so Im(f ® 1) is an ideal. Then to prove the other inclusion, we will show
that M @ P/Im(f ® 1) @ N ® P. Since Im(f ® 1) < Ker(g ® 1) we have a
natural epimorphism ¢: M ® P/Im(f®1) — N ® P. Now we define the map
P: Nx P —> M®P/Im(f®1) such that p(n,p) = mp+Im(f®1) where m
is such that g(m) = n. It follows that it is a well-defined Lie-Rinehart pairing,
so by the universality of the tensor product, there exists a unique Lie-Rinehart
morphism ¢: NQP — M®P/Im(f®1), and it is straightforward that ¢ and
 are inverse morphisms. O

Proposition 1.5.9. Given a perfect Lie-Rinehart algebra L, the non-abelian
tensor product L ® L is the universal central extension of L, where the quasi-
action of L on itself is the Lie bracket.

Proof. 1t is routine to check that L ® L — L is a central extension. To see the
universality, given a central extension p: M — L, we pick a section in Set,
s: L — M. We define now a map f: L x L — M by f(z,y) = [s(z),s(y)].
Doing the same trick as in Proposition we see that is a Lie-Rinehart
pairing, so it can be extended to L ® L — M. Since L is perfect, we saw in
Lemma that this map is unique. O
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Chapter 2

Non-abelian tensor product
and homology of Lie
superalgebras

Abstract

We introduce the non-abelian tensor product of Lie superalgebras and study some of
its properties. We use it to describe the universal central extensions of Lie superalge-
bras. We present the low-dimensional non-abelian homology of Lie superalgebras and
establish its relationship with the cyclic homology of associative superalgebras. We
also define the non-abelian exterior product and give an analogue of Miller’s theorem,
Hopf formula and a six-term exact sequence for the homology of Lie superalgebras.

Reference
X. Garcia-Martinez, E. Khmaladze, and M. Ladra, Non-abelian tensor product
and homology of Lie superalgebras, J. Algebra 440 (2015), 464-488.
2.1 Introduction

In [I], Brown and Loday introduced the non-abelian tensor product of groups
in the context of an application in homotopy theory. Analogous theories of
non-abelian tensor product have been developed in other algebraic structures
such as Lie algebras [8] and Lie-Rinehart algebras [4]. In [§], Ellis investigated

39
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the main properties of the non-abelian tensor product of Lie algebras and its
relation to the low-dimensional homology of Lie algebras. In particular, he
described the universal central extension of a perfect Lie algebra via the non-
abelian tensor product. In [7], the non-abelian exterior product of Lie algebras
is introduced and a six-term exact sequence relating low-dimensional homolo-
gies is obtained. In [I0], using the non-abelian tensor product, Guin defined
the non-abelian low-dimensional homology of Lie algebras and compared these
groups with the cyclic homology and Milnor additive K-theory of associative
algebras.

The theory of Lie superalgebras, also called Zs-graded Lie algebras, has
aroused much interest both in mathematics and physics. Lie superalgebras
play a very important role in theoretical physics since they are used to describe
supersymmetry in a mathematical framework. A comprehensive description
of the mathematical theory of Lie superalgebras is given in [I4], containing
the complete classification of all finite-dimensional simple Lie superalgebras
over an algebraically closed field of characteristic zero. In the last few years,
the theory of Lie superalgebras has experienced a remarkable evolution ob-
taining many results on representation theory and classification, most of them
extending well-known facts on Lie algebras.

In this paper we develop the non-abelian tensor product and the low-
dimensional non-abelian homology of Lie superalgebras, generalizing the cor-
responding notions for Lie algebras, with applications in universal central ex-
tensions and homology of Lie superalgebras and cyclic homology of associative
superalgebras.

The organization of this paper is as follows: after this introduction, in
Section we give some definitions and necessary well-known results for the
development of the paper. We also introduce actions and crossed modules of
Lie superalgebras. In Section we introduce the non-abelian tensor product
of Lie superalgebras, we establish its principal properties such as right exact-
ness and relation with the tensor product of supermodules. We describe the
universal central extension of a perfect Lie superalgebra via the non-abelian
tensor product (Theorem . In particular, applying this theorem, we
obtain that st(m,n,A) is the universal central extension of sl(m,n, A), for
m + n > 5, where A is a unital associative superalgebra. We also study
nilpotency and solvability of the non-abelian tensor product of Lie superalge-
bras (Theorem . Using the non-abelian tensor product, in Section
we introduce the low-dimensional non-abelian homology of Lie superalgebras
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with coefficients in crossed modules. We show that, if the crossed module
is a supermodule, then the non-abelian homology is the usual homology of
Lie superalgebras. Then we apply this non-abelian homology to relate cyclic
homology and Milnor cyclic homology of associative superalgebras, extending
the results of [I0]. Finally, in the last section we construct the non-abelian
exterior product of Lie superalgebras and we use it to obtain Miller’s type the-
orem for free Lie superalgebras, Hopf formula and a six-term exact sequence
in the homology of Lie superalgebras.

Conventions and notations

Throughout this paper we denote by K a unital commutative ring unless other-
wise stated. All modules and algebras are defined over K. We write Z = {0, 1}
and use its standard field structure. We put (—1)Y =1 and (—1)! = —1.

By a supermodule M we mean a module endowed with a Zs-gradation:
M = Mz ® M;. We call elements of M (resp. Mj) even (resp. odd). Non-
zero elements of My u M7 will be called homogeneous. For a homogeneous
m € Ma, & € Zy, its degree will be denoted by |m|. We adopt the convention
that whenever the degree function occurs in a formula, the corresponding ele-
ments are supposed to be homogeneous. By a homomorphism of supermodules
f: M — N of degree | f| € Z3 we mean a linear map satisfying f(Ma) S Naf|-
In particular, if | f| = 0, then the homomorphism f will be called of even grade
(or even linear map).

By a superalgebra A we mean a supermodule A = A5 ® Aj equipped with
a bilinear multiplication satisfying AaAB c Asy 5, for @, B € Zy.

2.2 Preliminaries on Lie Superalgebras

In this section we review some terminology on Lie superalgebras and recall
notions used in the paper. We mainly follow [2] 18], although with some
modifications. We also introduce notions of actions and crossed modules of
Lie superalgebras.

2.2.1 Definition and some examples of Lie superalgebras

Definition 2.2.1. A Lie superalgebra is a superalgebra M = Mz @ M7 with
a multiplication denoted by [ , ], called bracket operation, satisfying the fol-
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lowing identities:

[$7y] = _(_1)\w||y|[y’$]’
[z, [y, 2]] = [[=, 9], 2] + (=) W[y, [z, 2],

[mg, ms] = 0,
for all homogeneous elements z,y,z € M and mg € Mj.

Note that the last equation is an immediate consequence of the first one in
the case 2 has an inverse in K. Moreover, it can be easily seen that the second
equation is equivalent to the graded Jacobi identity

(=1 [z, [y, 2]] + (=)W y, [z,2]] + (1) W[z, [z, y]] = 0.

For a Lie superalgebra M = Mz ® Mj, the even part Mj is a Lie algebra.
Hence, if M7 = 0, then M is just a Lie algebra. A Lie superalgebra M without
even part, i. e., My = 0, is an abelian Lie superalgebra, that is, [x,y] = 0 for
all z,ye M.

A Lie superalgebra homomorphism f: M — M’ is a supermodule homo-
morphism of even grade such that f[z,y] = [f(x), f(y)] for all z,y € M.

Example 2.2.2.

(i) Any associative superalgebra A can be considered as a Lie superalgebra
with the bracket
[a,b] = ab— (—1)lellpq.

(ii) Let m, n be positive integers and A a unital associative superalgebra.
Consider the algebra M (m,n, A) of all (m+n) x (m+ n)-matrices with entries
in A and with the usual product of matrices. A Zs-gradation is defined as
follows: homogeneous elements are matrices F;;(a) having the homogeneous
clement a € A at the position (i, j) and zero elsewhere, and |E;j(a)| = |i| +
7| + |a|, where |i| = 0if 1 <i<mand |i| =1if m+1<i<m+n. With
this gradation, M(m,n, A) turns out to be an associative superalgebra. The
corresponding Lie superalgebra will be denoted by gl(m,n, A).

(iii) Let V = V5 @ V§ be a supermodule. Then the supermodule Endg (V)
of all linear endomorphisms V' — V' (of both degrees 0 and 1) has a structure
of an associative superalgebra with respect to composition (see [2]) and hence
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becomes a Lie superalgebra. In particular, if the ground ring K is a field, and
m, n are dimensions of V; and Vj respectively, then choosing a homogeneous
basis of V' ordered such that even elements stand before odd, the elements of
Endk (V') can be seen as (m + n) x (m + n)-square matrices

a b
c d
where a, b, c and d are respectively m x m, m x n, n x m and n x n matrices

with entries in K. The even elements are the matrices with b = ¢ = 0 and the
odd elements are matrices with a = d = 0.

Let M and N be two submodules of a Lie superalgebra P. We denote by
[M, N] the submodule of P spanned by all elements [m,n]| with m € M and
n e N. A Zy-graded submodule M is a graded ideal of P if [M,P] < M. In
particular, the submodule Z(P) = {c€ P : [¢,p] = 0 for all p € P} is a graded
ideal and it is called the centre of P. Clearly if M and N are graded ideals of
P, then so is [M, N].

Let M be a Lie superalgebra and D € Endk(M). We say that D is a
derivation if for all x,y e M

D([z,y]) = [D(x),y] + (=1)!P¥/[z, D(y)].

We denote by (DerK(M ))a the set of homogeneous derivations of degree & €
Zs. One verifies that the supermodule of derivations

Derg (M) = (Der(M));® (Derx(M));

is a subalgebra of the Lie superalgebra Endg (M ).

2.2.2 Actions and crossed modules of Lie superalgebras

Definition 2.2.3. Let P and M be two Lie superalgebras. By an action of
P on M we mean a K-bilinear map of even grade,

PxM— M, (pm)— Pm,
such that

(i) [Pl = P@Em) — (=1)PIPT P (P,
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(i) Plm,m'] = [Pm,m/] + (=1) Pl [m, '],

for all homogeneous p,p’ € P and m,m’ € M.
The action is called trivial if Pm = 0 for all pe P and m € M.

For example, if M is a graded ideal and P is a subalgebra of a Lie super-
algebra (), then the bracket in () induces an action of P on M.

Note that the action of P on M is the same as a Lie superalgebra homo-
morphism P — Derg(M).

Remark 2.2.4. If M is an abelian Lie superalgebra enriched with an action
of a Lie superalgebra P, then M has a structure of a supermodule over P
(P-supermodule, for short) (see e. g. [I8]), that is, there is a K-bilinear map
of even grade P x M — M, (p, m) — pm, such that

[p, p'Jm = p(p'm) — (=1)P71p/ (pm),

for all homogeneous p,p’ € P and m € M.

Note that a P-supermodule M is the same as a K-supermodule M together
with a Lie superalgebra homomorphism P — Endk(M).

Definition 2.2.5. Given two Lie superalgebras M and P with an action of
P on M, we can define the semidirect product M x P with the underlying
supermodule M @ P endowed with the bracket given by

[(m, p), (m',p)] = ([m,m] +Pm’ — (=1)" I (Fm), [p, p']).

Now we are ready to introduce the following notion of crossed modules of
Lie superalgebras (see also |23, Definition 5]).

Definition 2.2.6. A crossed module of Lie superalgebras is a homomorphism
of Lie superalgebras ¢: M — P with an action of P on M satisfying

(i) o(m) = [p,o(m)],
(it) Mm! = [m,m'],

for all pe P and m,m' € M.
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Example 2.2.7. There are some standard examples of crossed modules:

(i) The inclusion M — P of a graded ideal M of a Lie superalgebra P is a
crossed module of Lie superalgebras.

(ii) If P is a Lie superalgebra and M is a P-supermodule, the trivial map
0: M — P is a crossed module of Lie superalgebras.

(iii) A central extension of Lie superalgebras 0: M — P (i.e., Kerd € Z(M))
is a crossed module of Lie superalgebras. Here the action of P on M is given
by Pm = [m, m], where m € M is any element of 0~!(p).

(iv) The homomorphism of Lie superalgebras 0: M — Derg (M) which sends
m € M to the inner derivation ad(m) € Derg (M), defined by ad(m)(m') =
[m,m’], together with the action of Dery (M) on M given by Pm = D(m), is
a crossed module of Lie superalgebras.

Lemma 2.2.8. Let 0: M — P be a crossed module of Lie superalgebras. Then
the following conditions are satisfied:

(i) The kernel of 0 is in the centre of M.
(ii) The image of 0 is a graded ideal of P.

(iii) The Lie superalgebra Im 0 acts trivially on the centre Z(M), and so triv-
ially on Ker 0. Hence Ker @ inherits an action of P/Im ¢ making Ker 0 a
P/Im 0-supermodule.

Proof. This is an immediate consequence of Definition [2.2.6] O

2.2.3 Free Lie superalgebra and enveloping superalgebra of a
Lie superalgebra

Definition 2.2.9. The free Lie superalgebra on a Zs-graded set X = X5 u X3
is a Lie superalgebra F(X) together with a degree zero map i: X — F(X)
such that if M is any Lie superalgebra and j: X — M is a degree zero map,
then there is a unique Lie superalgebra homomorphism h: F(X) — M with
j=hoi.

The existence of free Lie superalgebras is guaranteed by an analogue of
Witt’s theorem (see [I8, Theorem 6.2.1]). In the sequel we need the following
construction of the free Lie superalgebra.
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Construction 2.2.10. Let X = X5 u X7 be a Zy-graded set. Denote by
mag(X) the free magma over the set X. The free superalgebra on X, denoted
by alg(X), has as elements the finite sums Y, \jx;, where \; € K and x; are el-
ements of mag(X) and the multiplication in alg(X) extends the multiplication
in mag(X). Note that the grading is naturally defined in alg(X). The free
Lie superalgebra F(X) is the quotient alg(X)/I, where I is the graded ideal
generated by the elements

vy + (1) Wy,
(1)1 (a(y2)) + (~1) ] (y =) + (=D (s(ap).
THLEs
for all homogeneous x,y,z € X and x5 € Xg.
Definition 2.2.11. The universal enveloping superalgebra of a Lie superalge-

bra M is a pair (U(M), o), where U(M) is a unital associative superalgebra
and o: M — U(M) is an even linear map satisfying

ofz,y] = o(x)o(y) — ()" Wo(y)o(a), (2.2.1)

for all homogeneous x,y € M, such that the following universal property
holds: for any other pair (A,o¢’), where A is a unital associative superalgebra
and 0’: M — A is an even linear map satisfying , there is a unique
superalgebra homomorphism f: U(M) — A such that foo =o'

Now we need to recall (see e. g. [2I]) that, given two supermodules M
and N, the tensor product of modules M ®x N has a natural supermodule
structure with Zs-grading given by

(M@ N)a= P 7(M5 ®k N7).

In particular, the tensor power M®", n > 2, has the induced Zy-grading.
Hence the tensor algebra T'(M) has the Zy-grading extending that of M. We
call T(M) the tensor superalgebra.

Construction 2.2.12. Let M be a Lie superalgebra and T (M) the tensor
superalgebra over the underlying supermodule of M. Consider the two-sided
ideal J(M) of T(M) generated by all elements of the form

mem — (—1)|m|‘m/|m'®m — [m,m],
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for all homogeneous m,m' € M. Then the quotient U(M) = T(M)/J(M)
is a unital associative superalgebra. By composing the canonical inclusion
M — T(M) with the canonical projection T(M) — U(M) we get the canonical
even linear map o: M — U(M). Then the pair (U(M), o) is the universal
enveloping superalgebra of M (see [Z]).

Note that, as in the Lie algebra case, the universal enveloping superal-
gebra turns out to be a very useful tool for the representation theory of Lie
superalgebras. In particular, by the universal property, it follows that a Lie
supermodule over a Lie superalgebra M is the same as a Zp-graded (left)
U(M)-module (see |21, Chapter 1]).

Let us consider K with Zs-grading concentrated in degree zero, that is,
with K; = 0. Then the trivial map from a Lie superalgebra M into K gives
rise to a unique homomorphism of superalgebras ¢: U(M) — K. The kernel of
e, denoted by Q(M), is called the augmentation ideal of M. Obviously, Q(M)
is just the graded ideal of U(M) generated by o(M).

2.2.4 Homology of Lie superalgebras

Now we briefly recall from [I8] 22] the definition of homology of Lie superal-
gebras.

The Grassmann algebra of a Lie superalgebra P, denoted by Ak (P), is
defined to be the quotient of the tensor superalgebra T'(P) of P by the ideal
generated by the elements

r@y+ ()" My@e,
for all homogeneous x,y € P. Note that Ac(P) = @,-o/\k(P), where

Ak (P) is the image of P®" in /A (P), has an induced P-supermodule struc-
ture given by

=1

Let M be a P-supermodule and consider the chain complex (Cy (P, M), d.)
defined by C,(P,M) = Ag(P) ® M, for n > 0, with boundary maps
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dp: Cp(P,M) — Cp—1(P, M) defined on generators by

n

=1
A XD ([ a A AR A AR A A T ®Y),
1<jJ

where w = i+ j+ [wi| gy 2kl + 5] 2 [m1] + [wilwj]. The n-th homology of
the Lie superalgebra P with coefficients in the P-supermodule M, H, (P, M),
is the n-th homology of the chain complex (Cy (P, M), dy), i.e.

Kerd,,
Im dn+1 .

H,(P,M) =

If K is regarded as a trivial P-supermodule, we write H, (P) for H, (P, K).
In the case when the ground ring K is a field, there is a relation between
Tor functor and the homology (see [18]) given by

H,, (P, M) =~ TorVP)(K, M).
By analogy to Lie algebras (see e. g. [11]), we have the following isomorphisms

Ho(P, M) =~ Coker (Q(P) ®U(P) M — M), (222)
Hi (P, M) = Ker (Q(P) Qupy M — M). (2.2.3)

2.3 Non-abelian tensor product of Lie superalge-
bras

In this section we introduce a non-abelian tensor product of Lie superalgebras,
which generalizes the non-abelian tensor product of Lie algebras [§], and study
its properties.

2.3.1 Construction of the non-abelian tensor product

Definition 2.3.1. Let M and N be two Lie superalgebras with actions on each
other. Let X7, v be the Zy-graded set of all symbols m®n, where m € MguMj,
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n € Ny u Ny and the Zy-gradation is given by |m ® n| = |m| + |n|. We define
the non-abelian tensor product of M and N, denoted by M & N, as the Lie
superalgebra generated by Xy, n and subject to the relations:

(i) A(im®mn) = Am®n =m®® An,
(i) (m+m')®@n=m®n+m'®n, where m,m’ have the same grade,
m® (n+ n’) =m@n+m@n’, where n,n have the same grade,
(iii) [m,m']@n =m®™n — (=) l(m/ @™n),
m® [, ] = (- 0D (. ) — (~ 1)l @ ),
(iv) [m@n,m' @n'] = —(=1)r""("m @ mn),
for every A € K, m,m' € Mz v M; and n,n’ € Nj u Ni.

Let us remark that if m = mg + mq is any element of M and n = ng + ng
is any element of IV, then under the notation m ® n we mean the sum

my @ ng + mg ®ng + mi @ng + my Qny.

If M = Mz and N = Nj then M ® N is the non-abelian tensor product of
Lie algebras introduced and studied in [8] (see also [12]).

Definition 2.3.2. Actions of Lie superalgebras M and N on each other are
said to be compatible if

(i) mn! = —(=1)lmlnl[mg, p/,
for all m,m’ € Mz v M; and n,n’ € Ny u Ny.

For example, if M and N are two graded ideals of some Lie superalgebra,
the actions induced by the bracket are compatible.

Proposition 2.3.3. Let M and N be Lie superalgebras acting compatibly on
each other. Then there is a natural isomorphism of Lie superalgebras

M ®x N
MON =~ ——
ON =P Ny
where D(M, N) is the submodule of the supermodule M ®« N generated by the
elements
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[m,m']®@n—m®™n+ (=1)l"I"Im' @ ™),

i) m® [n,n] — (=)D (Vi @ n) + (—=D)IMI (@ n),
("m) ® ("n), with [m| = |n|

(=)l () @ (M) + (—1) Ul D Am IR Dm0’ (n1) @ (1)

)

(v) (—1)mb D (m” L Dm0 [, 0] @ (M)

)
/ / " "
L,n),(mh,nt),(m=,n

for all m,m',m" € My L My and n,n',n" € Ny U N, where O denotes the
$7y7z
cyclic summation with respect to x,y, 2.

Proof. There is a Lie superalgebra structure on the supermodule (M ®g
N)/D(M,N) given on generators by the following bracket

[m@n,m' @n'] = —(~1)™" ("m e ™),

for all m,m’ € Mz v My, n,n’ € Nj u Ny and extended by linearity. It is
routine to check that this bracket is compatible with the defining relations of
(M ®k N)/D(M,N) and it indeed defines a Lie superalgebra structure. Then
the canonical homomorphism M@ N — (M ®x« N)/D(M,N), m®@n — m®n,

is an isomorphism. O

The proof of the following proposition is a routine calculation.

Proposition 2.3.4. Let M and N be two Lie superalgebras acting compatibly
on each other.

(i) The following morphisms
p:MN > M, m@n— —(—1)m"mm),
v:M®N —- N, m@n—"n,
are Lie superalgebra homomorphisms.
(ii) There are actions of M and N on M ® N given by
(m@n) = [m',ml@n + (~1)""Im e ("n),
"m®@n) = ("m)®@n+ (~1)"MIm @ [n/,n],

for m;m' € Mz u Mz, n,n’ € Ny U N7 and extended by linearity. More-
over, with these actions . and v are crossed modules of Lie superalgebras.
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We will denote by [M, N]™ (vesp. [M,N]") the image of p (resp. v),
which by Lemma ii) is a graded ideal of M (resp. N) generated by the
elements of the form "m (resp. ™n) for m € M and n € N. Note that by
Lemma [2.2.8(iii) Ker(u) (resp. Ker(v)) is an M/[M, N]M-supermodule (resp.
N/[M, N]"-supermodule).

2.3.2 Some properties of the non-abelian tensor product

The obvious analogues of Brown and Loday results [I] hold for Lie superalge-
bras. In the following two propositions immediately below we show that some-
times the non-abelian tensor product of Lie superalgebras can be expressed in
terms of the tensor product of supermodules.

Proposition 2.3.5. Let M and N be Lie superalgebras acting on each other.
Then the canonical map M @ N — M @ N, m®n — m @ n, is an even,
surjective homomorphism of supermodules. In addition, if M and N act triv-
tally on each other, then M ® N is an abelian Lie superalgebra and there is
an isomorphism of supermodules

M®N =~ M?* @« NP,
where M3 = M /[M, M] and N* = N/[N, N].
Proof. 1t is straightforward by the identities (iv), (iii) of Definition O

Proposition 2.3.6. Let P be a Lie superalgebra and M a P-supermodule
considered as an abelian Lie superalgebra acting trivially on P. Then there is
an isomorphism of supermodules

Proof. By Proposition there is an isomorphism of supermodules

Pk M

PR M ~
® W

where W is the submodule of P ®x M generated by all elements of the form

[p,p1®@m —p@p'm+ (~1)PIPly @ pm
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for all p,p’ € Py u P; and m € My v Mj. Now by using Construction
and by repeating the respective part of the proof of [3 Proposition 13|, it is
easy to see that there is an isomorphism of supermodules
PRk M
W
which completes the proof. O

= Q(P) ®U(P) Mu

The non-abelian tensor product of Lie superalgebras is symmetric, in the
sense of the following proposition.

Proposition 2.3.7. The Lie superalgebra homomorphism
M®®N->NQM, m@n+— —(—1)‘m‘|"‘(n®m),
is an isomorphism.

Proof. This can be checked readily. O

Let us consider the category SLieZ whose objects are ordered pairs of Lie
superalgebras (M, N) acting compatibly on each other, and the morphisms are
pairs of Lie superalgebra homomorphisms (¢: M — M’ ;¢: N — N’) which
preserve the actions, i.e., ¢("m) = *("¢(m) and ¥("n) = ¢(™)(n). For such
a pair (¢,1) we have a homomorphism of Lie superalgebras ¢ ®v¢: M @ N —
M @& N', m®mn — ¢(m) ®(n). Therefore, ® is a functor from SLie2K to the
category of Lie superalgebras.

Given an exact sequence in SLie}

0,0) — (K, L) %2 (v, N) @2 (p.Q) — (0,0), (2.3.1)

by Proposition [2.3.4(ii) there is a Lie superalgebra homomorphism M ®L — L
and an action of N on K ® N. Thus, there is an action of M ® L on K Q N,
so we can form the semidirect product (K ® N) x (M ® L), and we have the
following obvious analogue of [8, Proposition 9].

Proposition 2.3.8. Given the short exact sequence (2.3.1)), there is an exact
sequence of Lie superalgebras

(K@N)x (M®L) 2> MeN 2% PoqQ — 0.

In particular, given a Lie superalgebra M and a graded ideal K of M,
there is an exact sequences of Lie superalgebras

(KQM)x (M®K) > MM — (M/K)® (M/K) — 0. (2.3.2)
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2.3.3 Nilpotency, solvability and Engel of the non-abelian ten-
sor product

The results from [20] on nilpotency, solvability and Engel of the non-abelian
tensor product on Lie algebras can be easily extended to the case of Lie su-
peralgebras. The notions of nilpotency and solvability of Lie superalgebras
are given in [I8]. As they are very similar to the respective notions for Lie
algebras, we omit them. We say that a Lie superalgebra M is n-Engel if it
satisfies ad(x)™ = 0 for all € M. The proof of the following result is similar
to the proof of [20, Theorem 2.2].

Theorem 2.3.9. Let M and N be two Lie superalgebras acting compatibly on
each other. Then,
(i) If [M,N]™ is nilpotent, then M ® N and [ , N1V are nilpotent too.
Moreover, if the nilpotency class of [M, N1™ is cl([M, N]M), then
A([M, N) < (M @ N) N]
N]

cl([M,NTV)

%

cl([M,

<
< cl([M,

M)+

(ii) If [M, N1™ is solvable, then M@N and[ , N1V are solvable too. More-
over, if the derived length of [M, NM is ¢([M, N]M), then

~.

(M, N]Y) < (M ® N)
(([M,N]Y)

(iil) If [M, N]M is Engel, then M®N and [M, N1V are Engel too. Moreover,
if [M, N1M is n-Engel, then M ® N and [M,N]V are (n + 1)-Engel.

O([M, NI +
O([M, NI +

//\ //\

2.4 Universal central extensions of Lie superalge-
bras

Now we use the non-abelian tensor product of Lie superalgebras to describe
universal central extensions of Lie superalgebras. Recall that a central exten-
sion u: U — P is universal if for any other central extension f: M — P there
is a unique homomorphism #: U — M such that f o8 = u. It is shown in [19]
that a Lie superalgebra P admits a universal central extension if and only if
P is perfect, i.e. P =[P, P].
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It follows from Proposition and Lemma i) that the homomor-
phism u: P® P — [P, P], u(p®p’) = [p,p'], is a central extension of the Lie
superalgebra [P, P].

Theorem 2.4.1. If P is a perfect Lie superalgebra, then the central extension
u: PR P — P is the universal central extension.

Proof. Let f: M — P be a central extension of P. Since Ker f is in the centre
of M, we get a well-defined homomorphism of Lie superalgebras §: PQP — M
given by 6(p®p') = [mp, my ], where m, and m,y are any preimages of p and
P/, respectively. Obviously # o f = u. Since P is perfect, then by relation (iv)
of Definition so is P® P. Then by [19, Lemma 1.4] the homomorphism
0 is unique. O

Remark 2.4.2. If P is a perfect Lie superalgebra, then Hy(P) ~ Ker(PQ P —
P), since the kernel of the universal central extension is isomorphic to the
second homology Ha(P) (see [19]).

It is a classical result that the universal central extension of the Lie alge-
bra sl(n, A), where A is a unital associative algebra, is the Steinberg algebra
st(n, A), when n > 5 (see e. g. [16]). Recently, in [3], [9], this result has been
extended to Lie superalgebras. Below, using the non-abelian tensor product
of Lie superalgebras, we propose an alternative proof of the same result.

First we recall from [5] that, given a unital associative superalgebra A,
the Lie superalgebra sl(m,n,A), m +n > 3, is deﬁned to be the subalgebra
of the Lie superalgebra gl(m, n, A) (see Example (ii)) generated by the
elements Fjj(a), 1 <i+# j <m+n,ae Aju Aj. It is shown in [5, Lemma 3.3]
that sl(m,n, A) is a perfect Lie superalgebra. This guarantees the existence
of the universal central extension of sl(m,n, A).

The Steinberg Lie superalgebra st(m,n, A) is defined for m + n > 3 to be
the Lie superalgebra generated by the homogeneous elements Fjj(a), where
1<i#j<m+n,ac Aisa homogeneous element and the Z-grading is
given by |Fjj(a)| = |i| + |j| + |a|, subject to the following relations:

a — Fjj(a) is a K-linear map,
[Fij(a), Fji(b)] = Fix(ab), for distinct 4, j, k,
[FZ](CL),FM(Z))] = 0, for j #* k,’i # 1.
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Theorem 2.4.3 ([5]). If m 4+ n =5, then the canonical epimorphism
st(m,n, A) - sl(m,n, A), Fjj(a) — Eij(a),
is the universal central extension of the perfect Lie superalgebra sl(m,n, A).

Proof. We claim that there is an isomorphism of Lie superalgebras
st(m,n, A) = st(m,n, A) ® st(m,n, A).
Indeed, one can readily check that the maps

ﬁt(m, n, A) - ﬁt(m, n, A) ®5t(m7 n, A)7 EJ (a) = zk(a) ® Fk](l) for k # i, 7,
st(m,n, A) ® st(m,n, A) — st(m,n, A), Fi;j(a) ® Fi(b) — [Fij(a), Fr(b)],

are well-defined homomorphisms of Lie superalgebras if m + n > 5, and they
are inverses to each other. Since st(m,n, A) is a perfect Lie superalgebra, then
Theorem and [19, Corollary 1.9] complete the proof. O

2.5 Non-abelian homology of Lie superalgebras

The low-dimensional non-abelian homology of Lie algebras with coefficients
in crossed modules was defined in [I0] and it was extended to all dimensions
n [I2]. In this section we extend to Lie superalgebras the construction of zero
and first non-abelian homologies. We also relate the non-abelian homology
of Lie superalgebras with the cyclic homology of associative superalgebras
studied in [13] [15].

2.5.1 Construction of the non-abelian homology and some
properties

Let P be a Lie superalgebra. We denote by Cross(P) the category of crossed
modules of Lie superalgebras over P (crossed P-modules, for short), whose
objects are crossed modules (M,d) = (0: M — P) and a morphism from
(M, 0) to (N, ') is a Lie superalgebra homomorphism f: M — N such that
f(Pm) =Pf(m) forall pe P, me M and ¢’ o f = 0. By an exact sequence
(L,0") R (M,d) 2> (N,@) in Cross(P) we mean that the sequence of Lie

superalgebras L I M 25 N s exact.
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Lemma 2.5.1. Given a short exact sequence in Cross(P)

0— (L") L (M, 0) L (N, &) — 0,
the morphism 0": L — P is trivial and L is an abelian Lie superalgebra.
Proof. Clearly " = @ ogof=0and [[,I']=7®OU =0, forall[,l' e L. O

If (M,0) and (N, @) are two crossed P-modules, then the Lie super-
algebras M and N act compatibly on each other via the action of P.
Thus, we can construct the non-abelian tensor product of Lie superalge-
bras M ® N. Moreover, we have an action of P on M ® N defined by
P(m®n) = Pm@n + (—1)PIMm @ Pn, and straightforward computations
show that n: M @ N — P, m®n — [d(m), d'(n)], is a crossed P-module.

Proposition 2.5.2. Let (M, 0) be a crossed P-module. There is a right exact

functor (M ® —): Cross(P) — Cross(P) given, for any crossed P-module
(N,0"), by
(M®=)(N,d') = (M®N,n).

Proof. Tt is an immediate consequence of Proposition [2.3.§] O

Definition 2.5.3. Let (M, 0) be a crossed P-module. We define the zero and
first non-abelian homologies of P with coefficients in M by setting

Ho(P, M) = Coker v and Hi(P, M) = Kerv,

where v: PQ M — M, p® m — Pm, is the Lie superalgebra homomorphism
as in Proposition [2.3.4]

If we consider the crossed P-module (P,idp) we have that

Ho(P, P) = [PPP] ~ M, (P).

In addition, if P is perfect, by Theorem we have that H; (P, P) = Ha(P).

The zero and first non-abelian homologies generalize respectively the zero
and first homologies of Lie superalgebras in the sense of the following propo-
sition.
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Proposition 2.5.4. Let the ground ring K be a field. Let P be a Lie super-
algebra and M a P-supermodule thought as a crossed P-module (M,0). Then
there are isomorphisms of super vector spaces

Ho(P, M) =~ Ho(P,M) and Hi(P,M) =H;(P, M).

Proof. This is a direct consequence of Proposition and the isomor-
phisms (2.2.2)) and ([2.2.3]). O

Proposition 2.5.5. Given a short exact sequence in Cross(P)
0— (L,0) = (M,0) — (N,d) —0
we have an exact sequence of supermodules
Hi(P,L) > Hi(P,M) — H1(P,N) — Ho(P, L) — Ho(P,M) — Ho(P,N) — 0.

Proof. The proof is an immediate consequence of the snake lemma applied to
the diagram obtained from Proposition [2.5.2

PRL—>PROIM —PRJIN——0

RN

0 L M N 0.

O]

2.5.2 Application to the cyclic homology of associative super-
algebras

Now we recall from [15] and [13] the definition of cyclic homology of associative
superalgebras. Let A be an associative superalgebra and (C%(A),d,) denote
its Hochschild complex, that is C/(A) = A®(+1) and the boundary map
dy: Cl(A) — C!_1(A) is given by

n

n—1

d%(a0®®an) = Z(-l)ia()@-~®aiai+1®...®an
=0

4 (1) Hlanl(aoltHanDg 40 @ -+ @ an_1.
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Now the cyclic group Z/(n + 1)Z acts on A®(+1) yig
ta(ag @+ ®ay) = (=1)"HenlLi<nlonly @ ap @ -+ ® an_1,

where t,, =1+ (n+1)Z € Z/(n+ 1)Z. For each n > 0, consider the quotient
Cr(A) = A®(+1) /Tm(1 — t,,) which is the module of coinvariants of C”.(A)
under the Z/(n+1)Z-action. Then d}, induces a well-defined map d,,: Cy,(A) —
Cr—1(A) and there is an induced chain complex (Cx(A), dy), which is called the
Connes complex of A. Its homologies are, by definition, the cyclic homologies
of the associative superalgebra A, denoted by HC,,(A), n > 0.

Easy calculations show that, given an associative superalgebra A, HC;(A)
is the kernel of the homomorphism of supermodules

(AQk A)/I(A) — [4, 4], a®b ab— (—1)1*lpq,

where [A, A] is the graded submodule of A generated by the elements ab —
(—=1)lelltlpg and I(A) is the graded submodule of the supermodule A @ A
generated by the elements

a®b+ (—1)|aHb|b ®a,
ab@c—a®be+ (—1)ldlal+theq @ b,
for all homogeneous a, b, c € A.
Now let us consider A as a Lie superalgebra (see Example (1)) Then
there is a Lie superalgebra structure on (A ®x A)/I(A) given by
[a ®0, a ® bl] = [(I, b] ® [a/7 b/]

for all a,a’,b,/ € A. We denote this Lie superalgebra by V(A). In fact,
V(A) is the quotient of the non-abelian tensor product A ® A by the graded
ideal generated by the elements z® y + (—1)*IWy @ z and 2y @ z — 2 @ yz +
(—1)'2‘(|’”‘+|y|)zx ® y, for all homogeneous x,y, z € A.

Proposition 2.5.6. Let A be a Lie superalgebra. Then the following asser-
tions hold:

(i) There are compatible actions of the Lie superalgebras A and V(A) on
each other.

(ii) The map p: V(A) — A given by ®y — [x,y], together with the action
of A on V(A), is a crossed module of Lie superalgebras.
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(iii) The action of A on V(A) induces the trivial action of A on HC1(A).
(iv) There is a short exact sequence in the category Cross(A)
0 — (HC1(A4),0) — (V(A), 4) — ([4, 4], i) — 0,
where i: [A, A] — A is the inclusion.
Proof.

(i) The action of A on V(A) is induced by the action of A on A® A given
in Proposition [2.3.4{ii), that is
“(z@y) = [a0,2] @y + (-1)""z®[a,y]
=az @y + (—D)lllEHz @ ya — (—1)"lly @ ay — (—1)*1za @ y
=a® Ty — (_1)|9€Hy|a ® yx
=a® [$, y]’

whilst the action of V(A) on A is defined by

&Y g = [[x,y], a]

for all homogeneous a, x,y € A. Straightforward calculations show that these
are indeed (compatible) actions of Lie superalgebras.

(ii) Since the crossed module of Lie superalgebras AQ A — A, @y —
[z, y], given in Proposition vanishes on the elements of the form z®y +
(-1)Plly @z and 2y ® 2z — 2 @yz + (=1)FI2H) 22 ®y, then s well defined
and obviously it is a crossed module of Lie superalgebras.

(iil) If >, Mi(zs @ ;) € HC1(A), ie. D Ai[wi, yi] = 0, then for all a € A we
have

“(ZM(%’@%)) = Z)‘i(a® (i, yi]) = G®Z/\i[$i>yi] =0.

(iv) This is an immediate consequence of the assertions above. O
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By Proposition we have the following exact sequence of supermodules

M1 (A, HCy (A)) — M1 (A, V(A)) — Hi(A, [A, A])

/ (2.5.1)
Ho(A, HCy(A)) (A,V(4)) (4,[4, A]) —> 0.

HHO HHO

Below, we will calculate some of the terms of this exact sequence. At first,
by analogy to the Dennis-Stein generators [6], we give a definition of the first
Milnor cyclic homology for associative superalgebras.

Definition 2.5.7. Let A be an associative superalgebra. We define the first
Milnor cyclic homology HCM (A) of A to be the quotient of the supermodule
A ®k A by the graded ideal generated by the elements

a®b+ (—1)'“”blb®a,
ab® ¢ —a®be+ (—1)ldla+¥eq @ b,
a® bc — (—1)“’”""a®cb,

for all homogeneous a, b, c € A.

It is clear that if A is supercommutative, that is, ab = (—1)!%/*lpa, for all
homogeneous a,b € A, then HC;(A4) = HCM (A).

Lemma 2.5.8. We have the following equalities and isomorphisms

(i) Ho(A, HCy(A)) = HCy(A),
(if) H1 (A, HCy(A)) = A/[A, A] @ HCy (A),
(iti) Ho(A, [A, A]) = [A, A]/[4,[A, 4]],
(iv) Ho(A,V(4)) = HCY'(A).
Proof.

(i) Since A acts trivially on HC;(A), we have that Coker (A ® HCy(A) —
HC1(A4)) = HCy(A).
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(ii) Since HC1(A) is abelian, by Proposition we have that Ker (A ®
HC;(A4) —» HCy(A)) = A/[A, A] @« HC1(A).

(iii) and (iv) are straightforward. O

It follows that the exact sequence (2.5.1)) can be written as in the following
theorem.

Theorem 2.5.9. If A is a unital associative superalgebra. Then there is an
exact sequence of supermodules

A @k HOL(A) —— Hi (A, V(A)) — Ha(A,[A, A])

[u
HC;(A) ——— HCM(4) 4. 4] 0.

[A,[A, A]]

Corollary 2.5.10. If A is perfect as a Lie superalgebra, we have an exact
sequence

0 — H1(A,V(A)) —» Ha(A) — HC(A) — 0,
where Hy(A) is the usual second homology of the Lie superalgebra A. If in

addition Ha(A) = 0, then all terms of the exact sequence in the previous
theorem are trivial.

Proof. Since A is perfect we know that H;(A,A) = Hy(A4), A/[A, A] ®k
HC;(A) = 0 and the map A® V(A) — V(A) is surjective. O

2.6 Non-abelian exterior product of Lie superalge-
bras

In this section we extend to Lie superalgebras the definition of the non-abelian
exterior product of Lie algebras introduced in [§]. Then we use it to derive the
Hopf formula for the second homology of a Lie superalgebra and to construct
a six-term exact homology sequence of Lie superalgebras.

2.6.1 Construction of the non-abelian exterior product

Let P be a Lie superalgebra and (M, d) and (N, ') two crossed P-modules.
We consider the actions of M and N on each other via P.
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Lemma 2.6.1. Let M o N be the graded submodule of M ® N generated by
the elements

(a) m@n + (=)™ lm/ @n', where d(m) = &' (n') and d(m') = &' (n),

(b) mp ® ng, where d(mg) = &' (ng),
with m,m' € My u My, n,n’ € Ny u N7, mg € Mg and ng € Ng. Then, M o N
1s a graded ideal in the centre of M @ N.

Proof. Given an element m @ n + (—1)™ "I/ @ n’ of the form (a), suppose
that |m/| = |n|, then we have

/|(m’n/))
® (6(m)n + (_1)|m’Hn’|<a(m/)n,))

® (a’(n’)n + (_1)\m/||n’\(a/(n)n/))

® ([n’,n] + (—1)‘”””/‘[n,n’])

This is also true when |m/| # |n|. Indeed, if |m/| # |n|, since 0, &' are even
maps, the equality d(m) = ¢'(n’) holds if and only if d(m) = 0 = ¢'(n’). Now
take an element mg ® ng of the form (b). Then we have

[ @y, mg @ng] = ~(~1)1¥(72) @ ("ong)
= (=Dl (6(ma)n6)
= — (=)l (g @ (“a)n;)
= —(-D"W(¥2) ® [ng, ng)
=0,
for any  ® y € M ® N. This completes the proof. O

Definition 2.6.2. Let P be a Lie superalgebra and (M, ?d) and (N, d’) two
crossed P-modules. The non-abelian exterior product M A N of the Lie su-
peralgebras M and N is defined by

The equivalence class of m @ n will be denoted by m A n.
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Note that if M = Mg and N = N then M A N coincides with the non-
abelian exterior product of Lie algebras [§].

Reviewing Section one can easily check that most of results on the
non-abelian tensor product are fulfilled for the non-abelian exterior product.
In particular, there are homomorphisms of Lie superalgebras M A N — M,
M A N — N and actions of M and N on M A N, induced respectively by the
homomorphisms and actions given in Proposition It is also satisfied the
isomorphism M A N =~ N A M. Further, given a short exact sequence of Lie
superalgebras 0 - K — M — P — 0, as an exterior analogue of the exact
sequence , we get the following exact sequence of Lie superalgebras

KAM-—-MArM-—PAP—DO. (2.6.1)

Given a Lie superalgebra M, since id: M — M is a crossed module, we
can consider M A M. It is the quotient of M ® M by the following relations

mAam' = —(=1)mIM Iy A m,

mg A mg = 0,

for all m,m’ € My v My and mg € M. In the particular case when M is
perfect, it is easy to see that M o M = 0, so M A M =2 M ® M and in
Theorem we can replace M @ M by M A M.

2.6.2 A six term exact homology sequence

In [7], the non-abelian exterior product of Lie algebras is used to construct a
six-term exact sequence of homology of Lie algebras. In this section we will
extend these results to Lie superalgebras.

First of all, we prove an analogue of Miller’s theorem [I7] on free Lie
superalgebras extending the similar result obtained in [7] for Lie algebras.

Proposition 2.6.3. Let F' = F(X) be the free Lie superalgebra on a graded
set X. Then the homomorphism FF A F — F, x Ay — xy is injective.

Proof. Let us prove that [F,F] =~ F A F. Using the same notations as
in Construction we define a map ¢: alg(X) = alg(X) —» F A F by
D Aiwiyi — 2 Ai(xi A y;), where alg(X) = alg(X) is the free product of su-
peralgebras. It is easy to see that ¢ is a K-superalgebra homomorphism since
[z Ay, Ay'] =2y A 2'y. The ideal I is contained in alg(X) = alg(X) and by



64 2 Non-abelian tensor product of Lie superalgebras

using the defining relations of F' A F' it is not difficult to check that ¢ vanishes
on I. So we have an induced map from [F, F'] to F' A F', which is inverse to
the homomorphism F' A F — [F, F], x A y — xy. O

Let P be a Lie superalgebra and take the quotient supermodule (P Ak
P)/Tmds, where d3: Aj(P) — Ag(P) is the boundary map in the homology
complex (Cy(P,K),ds). Here K is considered as a trivial P-module. We define
a bracket in (P Ak P)/Imds by setting

[z Ay, 2" Ay = [z,y] A [2, 9]

for all z,y € P. As a particular case of the exterior analogue of Proposi-
tion [2.3.3l we have

Lemma 2.6.4. There is an isomorphism of Lie superalgebras

Corollary 2.6.5.
(i) For any Lie superalgebra P there is an isomorphism of supermodules

Hy(P) = Ker(P A P — P).

(ii) Ho(F') =0 if F is a free Lie superalgebra.

(iii) (Hopf Formula) Given a free presentation 0 - R — F — P — 0 of a
Lie superalgebra P, there is an isomorphism of supermodules

Proof.
(i) This follows immediately from Lemma [2.6.4]
(ii) This is a consequence of (i) and Proposition [2.6.3]
(iii) Since F A F x [F, F], using the exact sequence (2.6.1]), we have

[F F]
[F, R]

P AP~

Then Lemma [2.6.4] completes the proof. O
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Theorem 2.6.6. Let M be a graded ideal of a Lie superalgebra P. Then there
is an exact sequence

M
Ker(PAM — P) — Hyo(P) — Ho(P/M) — m — H;(P) - Hy(P/M) — 0.

Proof. By using the exact sequence ([2.6.1]) we have the following commutative
diagram of Lie superalgebras with exact rows

M/\P%P/\PH£ —>0

M~ M

A
L
M

Since Coker(M A P == P A M — M) =~ M/[P,M] and Coker(P A P —
P) = P/[P, P] =~ Hi(P), then the assertion follows by using snake lemma and

Corollary [2.6.5(1). O

In particular, if P is a Lie algebra and M is an ideal of P, then this
sequence coincides with the six-term exact sequence in the homology of Lie
algebras obtained in [7].

0 M P 0.
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Chapter 3

Universal central extensions

of sl(m,n, A)

Abstract

We find the universal central extension of the matrix superalgebras sl(m, n, A) where
A is an associative superalgebra and m + n = 3,4 and its relation with the Steinberg
superalgebra st(m,n, A). We calculate Ha (5[(m, n,A)) and Hy (5t(m, n,A)). Finally,
we introduce a new method using the non-abelian tensor product of Lie superalgebras
to find the connection between H, (5[(m, n, A)) and the cyclic homology of associative
superalgebras for m + n > 3.

Reference

X. Garcia-Martinez and M. Ladra, Universal central extensions of sl(m,n, A)
of small rank over associative superalgebras, Turkish J. Math., 2017,
d0i:10.3906 /mat-1604-3.

3.1 Introduction

The study of central extensions plays an important role in the theory of groups
or Lie algebras and has numerous applications going through physics, repre-
sentation theory or homological algebra. They have been studied by many
people in the context of Lie algebras as [8, [I5], etc. The universal central
extension is a key object in this study, since it simplifies the task of finding

69
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all central extensions and moreover, its kernel is the second homology group.
In [4] the universal central extension of Lie algebras is constructed as a non-
abelian tensor product, extended to Lie superalgebras in [7]; and in [9, [I3]
some of the results of [8] are extended to Lie superalgebras and the universal
central extension is constructed. The main problem of these constructions is
that they are usually hard to compute.

The concrete problem of finding the universal central extension of s, (A)
for n > 5 was solved in [II]. It is a very important result which involves
Steinberg Lie algebras (see [2, [5]) and allowed to develop the additive K-
theory. If n > 5, st,(A) is the universal central extension of sl,(A) and if A
is K-free, the kernel is isomorphic to the first cyclic homology HC;(A). The
problem of finding the universal central extension of sl,(A) and st,(A) for
n = 3,4 was solved years later in [6]. In [I2] the universal central extension of
the Lie superalgebras sl(m,n, A) and st(m,n, A) is computed with m +n > 5,
where A is an associative algebra, and the remaining cases where m +n = 3,4
are solved in [I4].

If A is an associative superalgebra, the universal central extension of s, (A)
is computed in [3] for all n = 3. The case sl(m, n, A) is studied in [7] for m+n >
5, leaving as an open problem the cases m + n = 3,4. In this paper, we will
solve these specific cases in order to complete the computation of the universal
central extension of sl(m, n, A) where A is an associative superalgebra and m+
n = 3; and therefore giving a complete characterization of the second homology
Hy (st(m,n, A)) for m + n > 3 (Theorem [3.8.1). Moreover, we introduce
a new technique using the non-abelian tensor product of Lie superalgebras
defined in [7] to relate Hy (5t(m, n, A)) and the cyclic homology of associative
superalgebras for m + n > 3 (Theorem .

The organization of this paper is the following. In Section [3.2] we give some
preliminary well-known results and some technical lemmas about sl(m,n, A)
and st(m,n, A). In Section we adapt the classical construction of a cen-
tral extension from a super 2-cocycle in Lie superalgebras. In Section we
start with the case of s[(2,1, A) and we show that its universal central ex-
tension is st(2,1, A), constructing a (unique) homomorphism to any central
extension. In Section we find the universal central extension of st(3,1, A)
(which consequently will be the universal central extension of s[(3,1, A)) via
the construction of a super 2-cocycle; repeating the procedure for st(2,2, A) in
Section In Section we relate the second homology of sl(m,n, A) with
cyclic homology. Finally, in Section we give concluding remarks establish-
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ing a combination of the results presented here with results of [3, [7] to give
the full computation of Hy (st(m, n, A)) and Hy (sl(m,n, A)) for m +n > 3.

3.2 The Lie superalgebras sl(m,n, A) and st(m,n, A)

Throughout this paper we consider K as a unital commutative ring and
A = Ag ® A7 an associative unital K-superalgebra. For any m,n € Z.,
let {1,...,m} v {m+ 1,...,m + n} be the Zy-graded set, where the first
set is the even part and the second one the odd part. We now consider
Mat(m,n, A) the (m + n) x (m + n) matrices with coefficients in A. It
is defined a Zs-graduation where homogeneous elements are matrices, de-
noted by Ejj(a), having a € Aj, A7 at position (i,j) and zero elsewhere and
|Eij(a)| = |i| + |j| + |a|. With this graduation we define the associative su-
peralgebra gl(m,n, A) which underlying set is Mat(m,n, A) with the usual
matrix product and it is endowed by a Lie superalgebra structure with the
usual bracket [z,y] = zy — (—=1)*¥yz.
Assuming that m 4+ n > 3, we define the special Lie superalgebra

sl(m, n, A) = [gl(m, n, A), gl(m,n, A)].
It is generated by the elements F;;,1 <1 # j < m +n, a € A, with bracket
[Eij(a), Ex(b)] = 65 Eu(ab) — (=1)Ps @B Ols, By (ba).

In [1] is introduced a generalization of the supertrace for z € gl(m,n, A),

defined as follows:
m-+n

Strl(x) = Z (_1)|i‘(|i|+|mii|)xii7

i=1

where z;; represents the element of = in the position (z,7). It is straightforward
that sl(m,n, A) = {z € gl(m,n, A) : Str1(z) € [4, A]} and that sl(m,n, A) is
perfect.

For m +n > 3, the Steinberg Lie superalgebra st(m,n, A) is defined as the
Lie superalgebra over K generated by homogeneous Fjj(a), 1 <i # j < m+n,
and a € A homogeneous, with grading |Fj;(a)| = |i| + |j| + |a|, satisfying the
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following relations:

a — Fjj(a) is a K-linear map, (3.2.1)
[Fij(a), Fjr(b)] = Fix(ab), for distinct i, j, k, (3.2.2)
[F (CL Fkl<b)] =0, forj#k,i#l, (3.2.3)

where a,b e A, 1 < i,j,k,l < m+ n. Note that st(m,n, A) is a perfect Lie
algebra and there is a canonical central extension

@: st(m,n, A) — sl(m,n, A), ¢(Fj(a)) — Eij(a).

Using a completely new technique, in [7] it is shown that if m +mn > 5, this
epimorphism is the universal central extension of sl(m,n, A). The remaining
cases, when m +n = 3 or 4, are left as an open problem and they are the
object of study of this paper. Our procedure to solve the problem is to find
the universal central extension of st(m,n, A) and by [13 Corollary 1.9] it will
be the universal central extension of sl(m,n, A).

We begin giving some relations in st(m,n, A) that will be useful. Let

Hij(a,b) = [Fiy(a), Fju(b)],
h(a,b) = Hyj(a,b) — (—1)IP Hy; (1, ba),

for 1 <i# j<m+n,aec A Ttis well defined since h(a,b) does not depend
on j, for j # 1. We recall that |H;;(a,b)| = |a| + |b| for homogeneous a,b € A.

Lemma 3.2.1. We have the following identities in st(m,n, A),

Hij(a,b) = —(—1)(il+lil+laDl+151+10 . 5, ), (3.2.4)
[Hlj (a b)7sz(C)] = z‘k(abc), (3.2.5)
[Hij(a,b), Fri(e)] = = (=) DETEHD B (cab), (3.2.6)
[Hij(a,b), Fy;(e)] = (—1)+laDl+ 5+ )+ (al+ D51+ KD - (cba)
(3.2.7)
[Hij(a,b), Fyj(c)] = Fyj(abe + (—1)ilFliltlellbiblcticliad ), (3.2.8)
[Hij(a,b), Fr(c)] =0, (3.2.9)
[h(a,b), Fii(c)] = Fii((ab — (~1)1*lba)c) (3.2.10)
[h(a,b), Fji(c)] =0 for j,k > 2 (3.2.11)

for homogeneous a,b,c € A and i, j, k,l distinct.
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Proof. Relations are just consequences of antisymmetry and

Jacobi identities. To check and m we need to apply (3.2.5] -

and (3.2.9) to the definition of h(a b)

The following lemma gives a better understanding of the structure of
st(m,n, A).

Lemma 3.2.2. Let F;j(A) be the subalgebra generated by Fij(a), N the
subalgebra generated by Fij(a) for 1 < i < j < m+n, N~ the subalgebra

generated by Fj(a) for 1 < j <i<m+n and H the subalgebra generated by
Hij(a,b), for all a,be A. Then

NT = @  FEy4),
I<i<j<m+n
N~ = @  FEj4),
1<j<i<m+n
m+n
H = h(AA) S ( D Hlj(l,A)),
j=2

and we have the decomposition

m+n
stim,n, A) = NTOHON ™ = h(A,A)®( ) Hlj(lyA)> ®  FyA).
j=2 I<i#j<m+n

O

Definition 3.2.3. Let Z,,, be the graded ideal of A generated by the elements
ma (i.e. a+ ---+ a, m times) and ab — (—1)1%Pba. Let A, = A/T,, be the
quotient algebra and denote by a = a + Z,, its elements.

Lemma 3.2.4 ([3]). Z,, = mA + A[A, A] and [A, A]A = A[A, A]. O

3.3 Central extensions of sl(m,n, A) and cocycles

Definition 3.3.1. Let L be a Lie superalgebra and W be a K-free supermod-
ule. A super 2-cocycle is a K-bilinear map v: L x L — W such that
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w(%?/) = _(_1)‘96”?/%(9795),
(D)l ([, y], 2) + (=) Wl([y, 2], @) + (=1)#IFlg([2,2],9) = 0,
¢(x67x6) =0,

for all x,y,z€ L, x5 € Lg.

Given an even super 2-cocycle 1), we can construct a central extension ([13])
Le®W — L, (z,w) — x, where the bracket is given by [(x,w1), (y,w2)] =
([z,y], ¢ (z,y)) (see [13]). In the particular case of L = st(m,n, A) and the su-
per 2-cocycle being surjective, this construction can be described in a different
way using generators and relations.

Definition 3.3.2. Let ¢: st(m,n, A) x st(m,n, A) — W be an even super 2-
cocycle, i.e. a super 2-cocycle such that |¢(x,y)| = |z| + |y| for homogeneous
z,y € st(m,n, A). Let st(m,n, A)* be the Lie superalgebra generated by the
elements Fij(a)ti with homogeneous a € A, 1 < ¢ # j < m + n, with degree
]Flﬁj (a)| = |i| + |7] + |a|] and by the elements of W, with the relations

[W, W] = [Ff(a), W] = 0,
[Fiﬁj(a)v F]ﬁk(b)] = Eﬁk(ab) + ¢ (Fy;(a), Fjr(b)) for distinct i, j, k,
[Fiﬁj(a),FIBI(b)] = (Fyj(a), Fru(b)) for i # j # k # 1 # 4,

where a,b € A.

Lemma 3.3.3. If st(m,n, A) = st(m,n, A) ®W is a central extension con-
structed from a surjective super 2-cocycle ¥: st(m,n, A) x st(m,n, A) - W
then there is an isomorphism p: st(m,n, A)* — st(m,n, A) where p(Ff] (a)) =
Fij and p(w) = w.

Proof. The proof of [3, Lemma 1] can be easily adapted. O

As before, we denote Hfj(a, b) = [Ffj(a), Fjﬁl(b)] and h¥(a,b) = Hfj(a, b) —
(—1)lallbl f ;(1,ba). Therefore, h! is independent of j and we have the analogue
decomposition lemma.
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Lemma 3.3.4. We can decompose the Lie superalgebra st(m,n, A)Ii gener-
ated by a surjective super 2-cocycle ¥: st(m,n, A) x st(m,n, A) — W in the
following way:

st(m,n, A)f =W @ h¥(4,4) @ <mé|:)nH ) @D FiA).

1<i#j<m+n

3.4 Universal central extension of st(2,1, A)

In this section we study the case when m + n = 3 and prove that st(2,1, A) is
the universal central extension of s[(2,1, A).

Theorem 3.4.1. If 7: st(2,1,A) — st(2,1,A) is a central extension, then
there exists a unique section n: st(2,1, A) — st(2,1, A).

Proof. We will directly obtain a Lie superalgebra homomorphism
n: s5t(2,1,A) — st(2,1,A), such that 7 onp = id and since st(2,1,A) is
perfect it must be unique. Let

0—>V—>5t(2,1,4) —>5t(2,1,A) — 0

be a central extension. We choose a preimage for Fjj(a) denoted by ﬁ'ij (a)
and extend it by K-linearity to all a € A.

We define ﬁw(a b) = [~ Fii(a), ﬁjl(b)] since it is independent of the choice
of Fij(a). By identity (3:24) we know that [Hy(1,1), Fyj(a)] = Fij(a) +vij(a),
where v;j(a) € V, so we W111 replace Fw( a) by Fj;j(a) + Uu( )

It suffices to show that these FZJ( ) satisfy relatlons - 3.2.3)) because
our K-linear section 7: st(2,1, 4) — st(2,1, A), F, ij(a) — FZ]( ) will be a Lie
superalgebra homomorphism and the result is proved. The first relation is
immediate by definition.

To see the second one, we use Jacobi identity and the fact that V is in the
centre of st(2,1, A).

Fyj(ab) = [Hi(1,1), Fyj(ab)] = [Hi(1,1), [Fi(a), Fi; (0)]]

= [[Ha(1,1), Fye(a)], Fiej (0)] + [Fiw(a), [Hir(1,1), Fyj(b)]]
= [Ei(a+ (1)1 Fa), Bi(0)] + [Fix(a), —(—1)FHFDEED F b))
= [Fi(a), Fi (0)].
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Now we check that the remaining brackets vanish.

[ ] 7 Fk]( )]]
+ (_ )<| |+|J|+\a|><| |+|kl+\b\)[ﬁik(b)’ [F5(a), By (] = 0.

[Fyj(a

To see that [Ej (a),ﬁ}k(b)] = 0 we can assume [i| + |j| = 1, then

= (-, k(0)]]

- [[ Fir(0)]

+( )( +lal)+ (\ |+\J\)(\ \+\J\+|a\)[ (a),[fl (1, )Ek(b)]]

= (=) Fy(a + (—1)'a), Fr(0)] + [Fij(a), ()] = [Fi (), F(b)].

If |i| + [j| = 0, we have that |i| + |k| = 1 and the calculation is the same.

Therefore, [ ”( ), Ea(b)] = 0if j # k and i # [, satisfying relation
and completing the proof. D

Corollary 3.4.2. The universal central extension of s(2,1, A) and st(2,1, A)
is 5t(2,1, A). Moreover, Hy (st(2,1, A)) = 0.

3.5 Universal central extension of st(3,1, A)

In this section we find the universal central extension of s[(3,1, 4). Let Sy
be the symmetric group of degree 4, i.e. the set of all quadruples (i, j, k,1)
where 1 < 1, j, k, [ < 4 distinct. We quotient S4 by Klein’s subgroup, formed by
{(1,2,3,4),(3,2,1,4),(1,4,3,2),(3,4,1,2)}, obtaining 6 cosets denoted by P,,.
We have a map 6 that sends (i, j, k,1) — 9((i,j,k,l)) = m when (i, j,k,1) €
P,.

Let II(Asg) be the K-supermodule Ay (see Definition with the parity
changed, i.e., (TII(A2)); = (A2); and ([I(A2)); = (A2)5. Let W = II(Ap)°
be the K-supermodule formed by the direct sum of six copies of II(As) and
consider the maps €,,: II(42) > W, epn(a) — (0,...,a,...,0), in the position
m.

Using the decomposition of Lemma we consider the K-bilinear map

P:st(3,1,A) x st(3,1,A) - W,
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where

¢ (F(a), Fu(b)) = “0((igk0)) (ab),
W(x,y) =0 if x or y belong to H.
Lemma 3.5.1. The K-bilinear map v is a super 2-cocycle.

Proof. Since the grading in W is changed and exactly one index is odd, we
have that

[V (Fig @), Fia(b)] = [il+151-+ ol + k|14 6] = lal + o+ T = ey, @D,

for homogeneous a,b € A, so v is even.
To complete the proof we can just follow the steps of [6, Lemma 2.2] since
a = —a so signs do not play any important role. O

By the previous lemma, we have a central extension
0——>W——>5t(3,1,A)f —">5t(3,1,4) —0,

where st(3,1, A)f = 5¢(3,1, A) @ W is the Lie superalgebra constructed by the
surjective super 2-cocycle 1, defined by the following relations

a— Ffj (a) is a K-linear map, (3.5.1)

[W, W] = [Ff(a), W] =0, (3.5.2)
[Ffi(a), Fi,(b)] = F,(ab) for distinct i, j, k, (3.5.3)
[Ffj(a). F(a)] =0, (3.5.4)
[ (a), Ff,(b)] = 0, (3.5.5)
[Ffi(a), Ffy(0)] = ¢, (k) (ab) for distinct i, j, k, . (3.5.6)

Theorem 3.5.2. The central extension 0 — W — st(3,1, A)¥ — st(3,1, A) is
ungversal.

Proof. Let

0——V—>5t(3,1,4) —>5t(3,1,4) —0
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be a central extension. We need to show that there exists a Lie superalgebra
homomorphism p: st(3,1, A)¥ — st(3,1, A) such that 70 p = 7.

We choose a preimage ﬁ};j(a) of Fjj(a) K-linearly for all a € A. Since
V < Z(st(3,1, A)), we have that

~

[Fik(a), Fj (b)] = Fij(ab) + viji(a,b),

for distinct 4, j, k, where v;;x(a,b) € V. Using Jacobi identity we have

[Fir(a), Fi;(ch)] = [Fin(a), [Fr(c), Fi; (b)]]
= [[Fix(a), Fu(o)], F1;(0)]
+ ( )(‘ A +{klHa) |k|+|l|+|0|)[ﬁkl(c)a [ﬁik(a)aﬁlj(b)]]
= [Fa(ac), Fi (b)],
so choosing ¢ = 1 we have the identities v;ji(a,b) = v;(a,b) and

}NT'Z-;,C a ,f’k b)| = E’l a ,E- b)|. This means that v;;r(a,b) is independent
J J J
of the choice of k so we have

~

[Eie(a), Fy;(b)] = Eyj(ab) + vij(a, b),

and

~

[Fik(1), Fij (b)] = F(b) + vi(1,b).

Therefore, we can replace Ej (b) by Ej(b) + v3;(1,b). We want to define
p(F; -ﬁ»(a)) = Fjj(a) so will see that these elements satisfy relations (3.5.1)—
(13.5.6)).

Relatlons and are straightforward by definition. To
see relation , we choose 1,7, k dlstlnct

~

[ﬁ [ z] F ij(l)]]
(£

i ~ ] ij(l)]
+ (_1)(| |+|J|+|a|)(| |+|k|+"’|)[ﬁik(b), [ﬁij(a),ij(l)]]

=0.
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For relation (3.5.5)), taking i, j, k, [ distinct, we have

[Fij(a), Fix(b)] = [Fij(a )7[le(b) Fyr(1)]]
= [[Fij(a), Fu()], Fir(1)]
+ (=) |+|J|+|a|)(|i|+|l|+|b|)[ﬁil(b)’ [Nij(a),ﬁik(l)]]

To check relation (3 we define HZ] (a,b) = [F, ij(a), FN’]Z(b)] and following
the steps of Lemma 3.2 1 we can check that for distinct 4, j, k, [,

~

ii(a,b) = —(=1)UHHaD (D B 5, a),
[Hj(a,b), Fi(c)] = Fix(abe),
[Nij (a,b),f’ki(c)] = _(_1)(\al+|b|)(\i|+\k\+|6|)ﬁ’m.(cab)7
[sz(a, b),ﬁkj(c)] = (-1 )(|i|+|j|+\al)(li|+ljl+\b\)+(|a\+|b|)(|j|+|k|+\0\)ﬁkj(Cba),
[ﬁij(a,b),ﬁij(c)] ﬁzj(abc + (—=1) Ui+l +lal b+ [bllel+lellal) )
[Nij<aab)a ~k:l(c)] =0.

When 1, 7, k, [ are distinct we denote

~ ~

[Fij(a), Fru(1)] = vijr(a),
where v;ji(a) € V. We want that p(ee((ijk ) (ab)) = vijri(ab), since

~

[Fij(a), Fa(b)] = [p(F;‘E(a))m(F;fl(b))]
p(LF5 (@), FE(B)]) = p(6y (45 40y) (@D)) = Vigra(ab).

Thus, we have to check that
(Rl) 2vijkl(a) = 0,
(R2) wvijri(a) = vijal(a) = vigj(a) = viuj(a),

(R3) wvijri(alb, c]) =0,
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Assume |i| + [j] = 0,

0 = [Hij(a,b), [Fij(c), Fra(1)]]
= [[Hij(a,b), Fij(c)], Fa(1)] - [Fj(a), [Hij(1,1), Fa(1)]]

— [Eyj(abe + (—1)li+ll+lallbl bl +iellal gpg) B (1]
— viji(abe + (—1)lallblbliel+iellal cpg).
If b =c =1, we have that
vijkl(2a) = 2vijkl(a) = O,

proving (R1).
If ¢ = 1, we have that

vijri(ab — (—1)1lpa) = 0,

SO

0 = vijp(abe + (—1)lallbl+BllclHellal g ) — v ((ab + (—1)|aw’|ba)c)7

implying (R2). If |k| + |I| = 0, the calculation is the same.
On the other hand,

[Fyj(a), Fu()] = [[Fi(a), Fij(1)], Fu(d)]
= [Fir(a), [Fiy (1), Fra(b)]]
_ (_1)(\i|+\k\+|a\)(\k\+ljl)[ﬁkja), [ﬁ;k(a), ﬁkl(b)]]
- (—1)(|l‘+|k|+|b|)(|’“‘+‘j‘)[ﬁ-l(ab),ﬁkj(l)]

= 'Uilkj(ab>7

since the sign does not play any role. Choosing b = 1 and using (R1), we have

that
vijki(a) = vikj(a).

Doing the same but changing the indexes we have relations (R3) and (R4).

Thus, the morphism p: st(3,1, A)% — gt(S, 1, A) defined by
p(Ffi(a)) = Fij(a)  and P(Ee((i’jm)) (ab)) = vijia(ab)

is actually a Lie superalgebra homomorphism completing the proof.

O

Corollary 3.5.3. The universal central extension of sI(3,1, A) is 5t(3,1, A)* =

s((3,1,A) @II(A2)°. Moreover, Hy (st(3,1, 4)) = W = I1(A2)°.
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3.6 Universal central extension of st(2,2, A)

In this section we find the universal central extension of s¢(2,2, A). As in the
previous section we consider the partition of S4 but with a small difference.
Not all the cosets will be considered as equals. The coset formed by

{(1,3,2,4),(1,4,2,3),(2,3,1,4),(2,4,1,3)},
is named P5 the one formed by
{(3,1,4,2),(3,2,4,1),(4,1,3,2), (4,2,3,1)},

is named Ps. The order of the other cosets P, ..., Py, will not be relevant.
Note that all the elements of P5 and Py have the property that |i| = |k|, |j| = |{]|
and |i| + || = |k| + |I] = 1.

Let 0: Sy — {—1,1} be a map defined by

o((i,j,k,1)) = 1if (i,4,k,1) € Pi, Py, Ps or Py,

in P5,
o((i,j, k1)) =1 if (i,7,k,0) = (1,3,2,4) or (2,4,1,3),
o((i, 4, k1)) = -1 if (i,7,k,0) = (1,4,2,3) or (2,3,1,4),
and in Fg,
o((i,4, k1) =1 if (i,4,k,1) = (3,1,4,2) or (4,2,3,1),
o((i,4,k,1)) = —1 if (i,7,k,0) = (3,2,4,1) or (4,1,3,2).

Furthermore, let W = A3@®A2 be K-supermodule formed by the direct sum
of four copies of Ay and two copies of Ay and the maps €,,(a) = (0,...,a,...,0)
in position m.

Using the decomposition of Lemma [3.2.2| we consider the K-bilinear map

P st(2,2,A4) x s5t(2,2,4) - W,

where

w(Ej(a)7Fkl(b)) = EQ((i,j,k,l)) (a’b)’ if (iaja k, l) € P, P, P, Py
0 (Fy(@) Fa(®)) = (D)Mo (g kD)€ () (@)1 (i) € P ox P,

P(x,y) =0 if z or y belong to H.
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Lemma 3.6.1. The K-bilinear map v is a super 2-cocycle.

Proof. The map is even since |i| + |j| + |k| + |I| = 0. To check antisymmetry,
it suffices to see what happens when (i, j, k,l) € P5 or Fs since in the other
cases the signs do not make any difference since A and Ay are commutative.
Let (4,4, k,1) € Ps, we know that |i| + |j]| = |k| + |I] = 1,

_(_1)|Fij(a)”Fkl(b)|w(Fkl(b)7FZ.j(a)) = —(—1)(|i|+|j|+|“|)(|k|+”|+|b|)zp(Fkl(b),Ej(a))

— (-1 )(T+\a|)(i+|bl)(_1)Ia\g((k’l,i,j))%(@)
1) o1 +lallel 5 ((;@l7i7j))65((_1)\allb|@>

= (=
(—1)Vg ((Lj,k,l))ee((i,jjhl)) (ab)
1/]( ( )7Fkl(b))a

since o ((4,7,k,1)) = o((k,1,4,5)) and ab = (—1)lall’lpa, 1f (i, 4, k, 1) belongs to
P it is analogue.

The identity (25, z5) = 0 where 25 € (st(2,2, A)) g is straightforward by
definition. The last step is to check Jacobi identity. In order to ease notation,
we denote by J(z,y, z) the expression

(=)=l ([, ), 2) + (=)W ([y, 21, 2) + (1) P (2, 2], ).

We have to check that J(x,y,z) =0 for all x,y, z € 5t(2,2, A).

Let ¥ ([x,y], z) # 0. Using the decomposition of Lemma we see that
at most one of z,y belongs to H. We can assume that x € H. To exclude
trivial cases we need that y = Fjj(a) and z = F(b), where 4, j, k, [ are distinct.
If (i,7,k,1) € P1,..., Py, the signs does not make any difference so the proof
is the same as in [0, Lemma 2.2]. Therefore, we just need to check when
(4,7,k,1) = (1,3,2,4) € P5 since the other cases are similar.

If = h(e,d), then

J(w,y,2) = (—1) (el Dy ([ F13 (a)], F2a(b))
+ (-1 Ia\+1)(|b\+1 w( Fou, h F13(b))

(— 1) (lel+d])(|b|+1) b(Fi (ab— —1)l9flba)c), Foy(b)) + 0
= (=1)lel+ldDpl+T)+]bl 5 ((1,3,2,4))es5((ab — (—1)lallblba)cb)
0
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If x = H12(1,c), then

J(2,y,2) = (—1) D ([Hs (1, ¢), Fig(a)], Faa(b))
+ (= 1)\l DD ([Fay (b), Hia(1, €)1, Fis(a))
— (—1)|C|(|a|+i)w(F13(ca),F24(b))
+ (_1)(\a|+i)(|bl+i)+|0|(Ib\+1)¢(F24(Cb),F13(a))
— (_1)ICI(|b\+i)+\aIU((1’3’274))65(@)
+ (_1)(\a|+|0|+1)(\b\+i)+\b\a((2747 1,3))es(cba)
1 )((_1)\a|65(@) + (_1)(Ia|+1)(|bl+1)+|ble5(%))
1)lel(fel+1)+al (es5(cab — (—1)lallblcha))

|b]+1

= (— )|C|(
= (— )|C|(

If © = Hq3(1,¢), then

J(z,y,2) = (=)D ((H5(1, ¢), Fia(a)], Faa(b))
— ¢ (Fiz(ca + (—1)Hlallclae), Foy (b))
= (—1)o((1,3,2,4))es((ca — (—1)lelldlac)b)
=0.

If © = Hi4(1,¢), then

J(x,y,2) = (=)D ([H, (1, ¢), Fiz(a)], Faa(b))

+ (=)D ([P (b), Hua(1, 0)], Fis(a))

= (—1)|C|(‘b‘+i)1/1(F13(ca),F24(b))

+ (—1)(|“|+1)(""+D+‘C‘zp(F24(bc), F13(a>)

— (_1)ICI(\b\+T)+\bIU((17372’4))65(@)

+ (_1)(|aI+T)(\b\+T)+\C\+|aIO_((2’ 4,1,3))es(bea)
(DOl (=)l (caB) — (1) Ve bea))
(_1)|b|+|0| ((_1)ICI|b|+|b||0|+|a|\b\65(@) _ (_1)|a\\b|65(@))
0.
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Assume now that neither z,y,z € H. If ¥([z,y],z) # 0 we must have
¢([sz(a)a Fk](b)L Fkl(c)) or ¢([le(a)7 -Flj(b)]v Fkl(c)) Againv if (Za]a k, l) €
Py, ..., Py, the sign does not matter so the proof is the same as in [6]. Assume
that (4,7, k,1) = (1,3,2,4) € Ps.

If v = Fia(a), y = Fa3(b) and z = Fy(c), then

J(z,y,2) = (—1)'“‘(|C|+Dw(F13(ab) F(c))
() DD el + 1) (B (ac), Fos ()
_ (71)|a\(|c|+i)+|clg((1 3,2,4))es(abe)
(1)Ul DA+ D46l (1, 4,2, 3)) 5 (ach)
— (= 1)l D+l (e (@be) + (—1) M+ e, (ach))
— (1)l D+el e (q(be — (~1)PIFleD))
0.

If x = Fiy(a), y = Fy3(b) and z = Fyy(c), then

J(x,y,2) = (—1 )(Ia\+i)(lcl+i)¢(F13 ab), Fa4(c))
— (=) PR DI g iy (ac), F14(b))
— (1) (el D+ D4l (1,3, 2, 4)) e (abe
(1) Plal e ol (2,3, 1, 4 e (cBa)
— —(—1)les (CD)ellabe — (—1)lBHPlelcha)
— _(—1)lle 5 ((—1)lellelabe — (1)l B+l pac)

= (—1)lal+lallel¢ 5((ab — (—1)lall¥l)c)
=0. -

We have a central extension
0——= W —>5t(2,2,A)f "> 5t(2,2,A) — 0,

where 5t(2,2, A)f = 5t(2,2, A) ®@W is the Lie superalgebra constructed by the
surjective super 2-cocycle 1, defined by the following relations:
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a— F%(a) is a K-linear map, (3.6.1)
[W, W] = [Ff;(a), W] = 0, (3.6.2)
[Ff(a), Fi(b)] = Ff(ab) for distinct i, j, k, (3.6.3)
[Ffi(a), Ffy(a)] = 0, (3.6.4)
[ (a), 5, (b)] = 0, (3.6.5)
[Flﬁj(a)’ Flgl(b)] = 69((i,j,k‘,l)) (%) lf (iaja k? l) € Plv P27 PS, P4 (366)
[Ff(a), FL(0)] = (=)Mo ((i, 5, k, 5))69((@%[)) (ab) if (3,7, k,1) € Ps, Ps.
(3.6.7)

Theorem 3.6.2. The central extension 0 — W — st(2,2, A)f — st(2,2, A) is
universal.

Proof. Let
0——>V—>5t(2,2,4) ——>5t(2,2,A) ——0

be a central extension. As done in Theorem we need a Lie superalgebra
homomorphlsm p: 5t(2,2, A)f — st(2,2, A) such that 70 p = 7. Choosing
preimages Fjj(a) of 7, we have to check they satisfy relations -
Doing the analogue computations as in Theorem |3.4.1] it is obv10us that re-
lations (3.6.1)—(B.6.5)) are satisfied. We have to check that the ﬁ}j(a) follow

(3.6.6) and (3.6.7)) to complete the proof.

As in the previous section, when 1, j, k, [ are distinct, denote

[Fij(a), Fra(1)] = vija(a).

To satisfy relations (3.6.6) and (3.6.7) we want to define the homomor-
phism from W by the expression p(ee((ijkl)) (ab)) = o((i, 4, k,1))vijr(ab). If

(i,4,k,1) € Py,..., Py, we have to check the conditions

(R1) 2vjj(a) =0,

(R2) vijri(a) = viju(a) = vak;j(a) = vii;(a),
(R3) viji(alb,c]) =0,

(R4) [Fij(a), Fra(b)] = vijri(ab).
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Note that every permutation in Pi, ..., Py, has an element such that || +
|| = 0. Thus, recovering some computations of the previous section we have
that

0 = [Hi;(1,1), [Fyj(a ) ( )]]
= [Fyja + (—1)!1Vla), Fy(1)]
= Uz’jkzl( ( )' il )
If |i| + |j| = 0, we have that [Fj;(a), Fi(1)] = —[Fij(a), Fri(1)]. Then,
[Fu(a), Fij(1)] = —(=1) KD E S (a), F(1)],

so [Fy(a), k (1)] = —[Fu(a), ﬁ’k]( )]. Changing the indexes we obtain (R1)
and (R2), and proceeding as in the proof of Theorem conditions (R3)
and (R4) are satisfied.

If (i,4,k,1) € Ps, Ps, we have that

[Fj(a), Fa(b)] = [p(‘Fiﬂj(a)) p(Ff(0))]
[ (a), Fy(5)])
)|b|o‘((z7 ik, l))ee((i,j,k,l)) (%))

Thus, we have to check the following conditions:
(C1) wvyr(a) = —vgja(a) = —virj(a) = vis(a),
(C2) [Fij(a), Fa(b)] = (—=1)PI[E;(ab), Fu(1)],

(C3) vijri(alb,c]) = 0.
To see (C1),
vigri(a) = [Fij(a), Fu(1 )]

[Fz]a [Fri(1), Fu(1)]] = [[Fij(a), Frs(1)], Fa(1)]
1)(\ \+\J\+|a\)(\kl+| D) [Fk (a);ﬁzl )]

—(=
—[Fj(a), Fu(1)] = —vgjala),
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and
vijr(a) = [Fy5(a), Fu(1)]
= [£yj(a). [Fiy(1), Fa(1)]] =
= (=1)(lil+ljl+lal) \MHJ\)[NM(U?[IE )715].1(1)]]
= (=1) U+ 1I+laDkl+151) [ﬁ (1)7}?1 (a)] =
(1) DD, (0), By (1)] =
—[Fu(a), Fij (1)] = —var; (a).
To check (C2),
[Fj(a), Fa(0)] = [Fij(a), [Fy (1), Fu(b)]]
= (—1)l+ll+lal) Ik\HJ\)[ﬁk](l)’ [Ej(a), sz(b)]]
= (—1) I+l +lal) |k‘+‘3‘)[~k](1),ﬁil(ab)]
- )(\J\Hllﬂb\)(lklﬂal)[ﬁzl(ab),ﬁkj(l)]
—(=)P[Fa(ab), By (1)] = (=1)"[Fyj(ab), Fra(1)]
= (—1)Plv;j4(ab),
by part (C1).
Using (C2) and the fact that |k| + |I| = 1,
vigr(alb, c]) = [Fi;(alb, ), Fia(1)]
= (_1)|b|+|8|a((i7jv k, l))[ﬁlj(a)v ﬁkl(bc - (_1)‘bHC|Cb)]
= (—1)|b|+|c|0'((i,j, ]{7, l)) [E-j(a), [ﬁkl(b, C), ﬁkl(l)]]
=0,
by Jacobi identity, we have that (C3) is satisfied.
Thus, we  obtained a  Lie  superalgebra = homomorphism
p: st(2,2,A)F — 5~t(2, 2, A) completing the proof. O

Corollary 3.6.3. The universal central extension of 51(2,2, A) is 5t(2,2, A)* =

s(2,2, A) ® A3 ® A2. Moreover, Hy (5t(2, 2, A)) >~ W > A3 A2,
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3.7 Non-abelian tensor product and cyclic homol-
ogy

In this section, we will consider the associative superalgebra A free as a K-
supermodule. This assumption is needed in the definition of cyclic homology
via complex.

Definition 3.7.1 ([10]). Let C,,(A) = A®"/I,, be the chain complex for n > 0
where I, is the submodule generated by the relations

W®a Q- @ ay, — (—1)" ol Z0 il @ ag @ a1 ® -+ ® an_1,

for a; € A homogeneous. The boundary maps d,, are defined on generators by

n—1

dp(ap®a1 ® - Qay) = Z(_l)ia0®a1®“'®aiai+1®ai+1®“'an

i=0
n—1 .
+ (—1)rtlenlZico loilg, 00 @ a1 @ - ®@ ap-1,

for a; € A homogeneous. The cyclic homology HC,,(A) of the associative
superalgebra A is the homology of the chain complex C,(A).

In [7], it is introduced the non-abelian tensor product of two Lie superalge-
bras acting on each other. For the sake of simplicity, we recover the definition
in the particular case of a Lie superalgebra L acting on itself by the canonical
action, also called non-abelian tensor square.

Definition 3.7.2. Let L be a Lie superalgebra. The non-abelian tensor square
L®L is the tensor product of supermodules L ® L quotient by the submodule
generated by the relations

(0) [2,9]®z =2®[y, 2] — ()P Wy @[z, 2],
(i) 2 ® [y, 2] = (L) 2] @ y) — (~1)FV([y, 2] ® 2),
for all x,y,z € L. It has a Lie superalgebra structure with bracket

[t®y, z@w] = [z,y] @ [2,w].
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It is shown in [7] that if L is perfect, the homomorphism u: LQL — L,
r ®y — [z,y], is the universal central extension of L and Keru = Hy(L).
Therefore, the universal central extension of sl(m,n, A) is the same as the
universal central extension of 5t(m, n, A) which is st(m, n, A)®st(m,n, A). Ad-
ditionally, we know that the universal central extension of st(m,n, A) is just
itself plus a K-supermodule, which will be denoted by W(m,n, A), possibly
Zero.

Theorem 3.7.3. Let m +n > 3. Then there is an isomorphism of K-
supermodules

Hy(sl(m,n, A)) =~ HC1(A) @ W(m,n, A).
Proof. We consider the following diagram

A®A

dy
T d @W(m,n,A) ——[A, A] —0

Strz/wu Sm]\l E1(-)

0——H, (5t(m, n, A)) —— st(m, n, A)Qst(m,n, A) %> sl(m,n, A) — 0,

0—HCi(A) ®@W(m,n,D) —>

where ,u(a ® b) = Flj(a) ® Fjl(b) — (—1)|aHb|F1j(ba) ® Fjl(l), ,u(v,-jkl(a)) =
Fij (a) ® Fkl(b) and
a®b, ifi=75 and k=1,
Stro (Fij(a) ® Fr(b)) = { vijri(ab), when it makes sense depending of m,n,
0, otherwise.

It is a straightforward computation that po Stro and Eq1(—) o Stry are the
identity maps and that the diagram is commutative. Then the restrictions of
Stro to the kernel of w is also a split epimorphism, with p restricted to the ker-
nel of dy as section. Let us see that these restrictions are indeed isomorphisms.
An element in the kernel of w, is a sum of elements of the form Fj;(a) ® Fj;(b)
plus the elements of W(m,n, D). Any element of Kerw can be written as an
element of Im u plus Y7 5" Fy;(a;) ® Fy1 (1), since

Fij(a) ® Fji(b) = Fiu(a) ® Fiy(b) — (—1)1Fa@DIFEOD By (ba) @ Fiy(1),
and

Fij(a) ® Fju(b) =Fij(a) ® Fju (b) — (—1)I"1 1 (ba) © Fy5(1)
+ (=D E (ba) ® Fyi(1).
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Furthermore, if it is in the kernel of w, all the a; must be zero. Then the
restriction of u to the kernel of d; is surjective. O

3.8 Concluding remarks

Combining the main theorems presented here with the main theorems of 3} [7]
we have a complete characterization of Ho (5t(m,n, A)) and Hs (sl(m,n, A))
form+n > 3.

Theorem 3.8.1. Let K a unital commutative ring and A an associative unital
K -superalgebra. Then,

(0 form4+n=50rm=2n=1,
A form =3,n=0,
H, (ﬁt(m,n,A)) = { A form=4,n=0,

[M(A2)¢  form=3n=1,
\A%(—BA% form=2n=2,

where Ay, is the quotient of A by the ideal mA + A[A, A] (Definition [3.2.5)
and I1 is the parity change functor.

Theorem 3.8.2. Let K a unital commutative ring and A an associative unital
K -superalgebra with a K-basis containing the identity. Then,

(HC1(A) form+4+n=5o0rm=2n=1,
HC1(A) ® A§ form =3,n=0,
H; (sl(m,n, A)) = { HC1(A) ® A§ form =4,n=0,

HC1(A) ®@TI(A2)¢  form =3,n=1,
(HC1(A) @AY ® A3 form =2,n =2,

where Ay, is the quotient of A by the ideal mA + A[A, A] (Definition [3.2.5)
and 11 is the parity change functor.
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Chapter 4

Universal central extensions
of Leibniz superalgebras over
superdialgebras

Abstract

We complete the problem of finding the universal central extension in the category
of Leibniz superalgebras of sl(m,n, D) when m + n > 3 and D is a superdialgebra,
solving in particular the problem when D is an associative algebra, superalgebra or
dialgebra. To accomplish this task we use a different method than the standard
studied in the literature. We introduce and use the non-abelian tensor square of
Leibniz superalgebras and its relations with the universal central extension.

Reference

X. Garcia Martinez and M. Ladra, Universal central extensions of Leibniz
superalgebras over superdialgebras, Mediterr. J. Math. 14 (2017), no. 2, Art.
73, 15.

4.1 Introduction

Leibniz algebras, the non-antisymmetric analogue of Lie algebras, were first
defined by Bloh [I] and later recovered by Loday in [22] when he handled
periodicity phenomena in algebraic K-theory. Many authors have studied

93
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this structure and it has some interesting applications in Geometry and
Physics ([16], [25], [6]). On the other hand, the theory of superalgebras arises
directly from supersymmetry, a part of the theory of elemental particles, in
order to have a better understanding of the geometrical structure of spacetime
and to complete the substantial meaningful task of the unification of quantum
theory and general relativity ([32]). The study of Lie or Leibniz superalgebras
has been a very active field in the recent years since the classification of simple
complex finite-dimensional Lie superalgebras by Kac in [14].

The study of central extensions is a very important topic in mathematics.
There is a direct connection between central extensions and (co)homology, and
they also have relations with Physics ([30]). In particular, universal central
extensions have been studied in many different structures as groups [27], Lie
algebras [11], [31] or Lie superalgebras [28]. A very interesting tool in the study
of universal central extensions is the non-abelian tensor product introduced in
[2] and extended to Lie algebras in [5] and to Lie superalgebras in [9].

The theory related with the universal central extension of the special linear
algebra sl(n, A) has been very active due its relation with cyclic homology and
its relevance in algebraic K-theory. The first approach was in the category of
Lie algebras by Kassel and Loday in [15] where they described it when n > 5
and A is an associative algebra, and in [§] it was obtained for n > 3. For the Lie
superalgebra sl(n, A) and A an associative superalgebra, the universal central
extension was given in [3]. For the special linear superalgebra sl(m,n, A),
the universal central extension for A an associative algebra was found in [26]
and [29]; and for A an associative superalgebra was found in [4] and [10]. In the
category of Leibniz algebras, the universal central extension of sl(n, A) (seen
as a Leibniz algebra), where A is an associative algebra, was found in [24] when
n =5 and in [I3] when n > 3. For the Leibniz superalgebra sl(m,n, A), when
m +mn =5 and A is an associative algebra it was calculated in [2I]. In [18] it
was found for the Leibniz algebra sl(m, D) and for the Leibniz superalgebra
sl(m,n, D), where m = 5 and m +n > 5, respectively, and D is an associative
dialgebra.

The aim of this paper is to complete the task, finding the universal central
extension of sl(m,n, D) where D is a superdialgebra and m + n > 3. Since
associative algebras, associative superalgebras and dialgebras are all examples
of associative superdialgebras, we will solve all cases at once. Moreover, we
obtain a result contradicting a specific point of a theorem given in [I8]. The
most interesting part of this paper is that the method used is not the same
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as in all the papers cited above. Due its relation with central extensions,
we introduce and use the non-abelian tensor square of Leibniz superalgebras
providing another point of view to this topic.

4.2 Preliminaries

Throughout the paper we fix a commutative ring R with unit.

4.2.1 Dialgebras

We recall from [23] the definitions and basic examples of (super)dialgebras.

Definition 4.2.1. An associative dialgebra (dialgebra for short) is an R-
module equipped with two R-linear maps

—:D®pD — D,
4:D®pD — D,

where - and — are associative and satisfy the following conditions:

a—(bdec)=a- (b}t ¢),

(a-b)4c=at (bdc),

(a—4b)Fec=(akb) ¢
for all a,b,ce D.

An ideal I < D is an R-submodule such that if a or b belong to I then
a—beDandatbe D.
A bar-unit in D is an element e € D such that for all a € D,

a—e=a=c¢el a.

Note that a bar-unit may not be unique. A unital dialgebra is a dialgebra with
a chosen bar-unit, that will be denoted by 1.

An associative superdialgebra (superdialgebra for short) is a dialgebra
equipped with a Z-graded structure compatible with the two operations, i.e.
Ds = Dz © Dys,5 and D o Dz < Dy, 5, for &, € Z. The concepts of
bar-unit, unital and ideal are analogous in superdialgebras. Note that the
bar-unit is always even.
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Example 4.2.2. We introduce some examples of superdialgebras.

(i) An associative (super)algebra defines a (super)dialgebra structure in a
canonical way, where a 4 b = ab = a + b. If it is unital, then the
superdialgebra is unital.

(ii) Let (A,d) a differential associative (super)algebra, i.e., d(ab) = d(a)b +
ad(b) and d?> = 0. We define the two operations by

a—b=adb),
atb=d(a)b.

It is immediate to check that with these operations (A,d) is a (su-
per)dialgebra.

(iii) Let A an associative (super)algebra, M an A-(super)bimodule and
f: M — A an A-(super)bimodule map. Then we can define a (su-
per)dialgebra structure with operations

m —m' =mf(m'),

m = m' = f(m)m'.

(iv) Let D and D’ be two superdialgebras. The tensor product D ®g D’ is a
superdialgebra where

(a®@d) 4 (@) = (-1)“I"l(a 4b) ® (' =),
(@a®@d) = (@) = (-1)"Il(a - b) ® (' - V).

4.2.2 Leibniz superalgebras

Definition 4.2.3. A Leibniz superalgebra L is an R-supermodule with an
R-linear even map

[—,—]: L®r L — L,
satisfying the Leibniz identity
[$7 [y7 Z]] = [[.CE, y]7 Z] - (_1)|y||z\ [[$, Z]a y]>

for all x,y,z € L.
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Note that a Leibniz superalgebra where the identity [z,y] =
—(—1)#lWl[y, z] also holds, is a Lie superalgebra.

Example 4.2.4.
(i) A Lie superalgebra is in particular a Leibniz superalgebra.
(ii) Let D be a superdialgebra. Then D with the bracket
[a,b] = a = b— (=1)llPlp - @,

is a Leibniz superalgebra. If the two operations - and + are equal, i.e.,
D is also an associative superalgebra, this bracket also induces a Lie
superalgebra structure.

Definition 4.2.5. The centre of a Leibniz superalgebra L, denoted by Z(L),
is the ideal formed by the elements z € L such that [z,z] = [z, 2] = 0 for all
x € L. The commutator of L, denoted by [L, L], is the ideal generated by
the elements [z, y] where x,y € L. A Leibniz superalgebra is called perfect if
L=[L,L].

Definition 4.2.6. A central extension of a Leibniz superalgebra L is a sur-
jective homomorphism ¢: M — L such that Ker¢ < Z(M). We say that a
central extension u: U — L is universal if for any central extension ¢: M — L
there is a unique homomorphism f: U — M such that u = ¢ o f.

The theory of central extensions of Leibniz superalgebras is studied in [20].
We obtain the following straightforward results.

Proposition 4.2.7. Let ¢: E — M and y: M — L be two central extensions
of Leibniz superalgebras. Then ¢ is universal if and only if 1 o ¢ is universal.

Proposition 4.2.8. Let M be a Leibniz superalgebra and L an R-supermodule.
An R-supermodule homomorphism ¢: M — L such that Ker o € Z(M) defines
a Leibniz superalgebra structure in L where the bracket is given by

[2,9] = p([e~ (2), ' (W)))-
for x,y e L.

Now, we introduce the homology of Leibniz superalgebras with trivial co-
efficients adapting it from the non-graded version [24].
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Definition 4.2.9. Let L be a Leibniz superalgebra and 4,: L®" — L®1
the R-linear map defined on generators by

on(T1 @ ®y) =
Z(_1)n—j+\rj\(|$i+1|+'"+|93j—1|)x1®. - ®Ti @[T, 2 ]®Ti 11® - QTR - Q.
i<j
The homology of Leibniz superalgebras with trivial coefficients is the homology

of the chain complex formed by d,, i.e.

_ Kerd,

B Im 6n+1

Note that d3(z ®y®2) = —[2,y] @ z + = ® [y, 2] + (=1)¥*[z, 2] @ y.

In [12] it is defined a non-abelian tensor product of Leibniz algebras and
in [I7] a variation is introduced. Both coincide in the case of perfect Leib-
niz algebras, so for simplicity we will generalize to Leibniz superalgebras the

HL,(L)

version of [I7].

Definition 4.2.10. Let L be a perfect Leibniz superalgebra. The non-abelian

tensor product of L is
L®rL

LeL= |m63

)

where J3 is the map defined on the chain complex of Leibniz homology and
the bracket is [z ® y,2' ® ¥'] = [x,y] ® [2/,4]. Therefore, we have a short
exact sequence.

0—>HLy(L) —>L®L 5L —>0.

Theorem 4.2.11. Let L be a perfect Leibniz superalgebra. Then §o: LQL — L
is the universal central extension of L and its kernel is HLa(L).

Proof. Let Y, x; ® y; be in the kernel of . Then } [z, 3] = 0, so [, x; ®
vi, ' @y = D, [xi, il ® [2/,y'] = 0. Therefore, d2 is a central extension.

Let 0 K—>M ? L 0 be a central extension. We define a
homomorphism u: LQ L — M, x ® y — [Z,y], where Z and y are preimages
by ¢ of x and y respectively. This homomorphism is well defined since Ker ¢ <
Z(M). If u, 1’ are two homomorphisms such that gou = gou’, then u—u’ = ron
where n: LQ L — K and n([L® L, L ® L]) = 0. Since L is perfect, L ® L is
also perfect and u is unique. O
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4.2.3 Matrix Leibniz superalgebras

Let {1,...,m}u{m+1,...,m+n} be a graded set and D = Dy @ D; unital
superdialgebra. We consider the set M(m,n, D) of (m+n) x (m+n)-matrices.
Let E;j(a) be the matrix with a € D in the position (7, j) and zeros elsewhere.
We define a grading in M (m, n, D) where the homogeneous elements are E;;(a)
with a homogeneous and the grading is given by |E;j;(a)| = |i| + |j| + |a|. Now
we define the general Leibniz superalgebra gl(m,n, D) which has M(m,n, D)
with the previous grading as underlying set and the Leibniz bracket is given
by [z,y] =z 4y — (=1)*¥ly = 2. If m + n = 2, we define the special linear
Leibniz superalgebra sl(m,n, D) = [gl(m,n, D), gl(m,n, D)]. It is easy to see
that sl(m,n, D) is generated by E;;(a) witha € DyuDjand1 < i # j < m+n
and the bracket is given by

[Eij(a), Er(b)] = 6xEula o b) — (=1)Fs@EOlg, B 6 1 a).

Following [18], if m+n > 3 then sl(m, n, D) is perfect. We define the supertrace
as the R-linear homomorphism Stry: gl(m,n, D) — D with

m+n

Stry(x) = Z (—1)'7“(|Z|+|‘rzz|)$”

i=1
Note that sl(m,n, D) = {z € gl(m,n, D) : Stri(x) € [D, D]}.

Definition 4.2.12. Let D be a superdialgebra and m and n non-negative
integers such that m +n > 3. We define the Steinberg Leibniz superalgebra
denoted by stl(m, n, D) as the Leibniz superalgebra generated by the elements
Fij(a) with a € Dy v Dy, 1 <1 # j < m + n, where the grading is given by
|Fij(a)| = |i| + |j| + |al, subject to the relations

a — Fjj(a) is R-linear,

[Fij(a), Fru(b)] = Fu(a < b), if i # 1 and j =k,
[Fij(a), Fu(®)] = —(=)/F@IBa®lp (b a),  ifi=1and j # k,
[Fij(a), Fra(D)] = 0, ifi £ 1 and j # k.

We recall from [19] that stl(m,n, D) is perfect and the canonical Leibniz
superalgebra homomorphism ¢: stl(m,n, D) — sl(m,n, D), Fij(a) — E;j(a)
is a central extension.
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4.3 Universal central extension of sl(m,n, D)

In this section we are going to show that stl(m,n,D) is the universal cen-
tral extension of sl(m,n,D) when m + n > 5. We are going to use a
slightly different method than usual found in the literature. The strategy
is to prove that there is an isomorphism between the non-abelian tensor prod-
uct stl(m,n, D) ® stl(m,n, D) and stl{(m,n, D) itself. Then Proposition [£.2.7]
implies that st{(m,n, D) is the universal central extension of sl(m,n, D).

Theorem 4.3.1. There is an isomorphism stl(m,n,D) ® stl(m,n,D) =
stl(m,n, D) for m +n > 5.

Proof. Let us consider the following homomorphisms defined on generators:

@: sti(m,n, D) ®@stl(m,n, D) — stl(m,n, D), Fij(a) ® Fi(b) — [Fi;(a), Fri(b)],
77/): St[(mv n, D) - ﬁt[(ma n, D) @5{[(7)1, n, D)a FZj(a) = ’Lk‘(a‘) & ij(l)

It is straightforward that ¢ is a well-defined Leibniz superalgebra homomor-
phism. For different i, j, k we have

Fir(a) ® Fi;(1) = [Fis(a), Fae(1)] ® Fij (1) = Fis(a) ® Fy;(1),

so 1 does not depend of the choice of k. To check if 1 preserves the relations
it is enough to see that:
(a) If i # [ and j = k,

Fij(a) ®Fkl(b) = Fij(a> ® [st(b)stl(l)] = Fis(a — b) ®Fsl(1)
(b) If i =l and j # k,

Fij(a) ® F(b) = [Fis(a), Fy;(1)] ® Fr(b)

— () HaD Uk D By (3 - 0) @ Fig(1).

(c) Ifi # 1 and j # K,
Fij(a) ® Fii(b) = [Fis(a), Fsj(1)] ® Fu(b) = 0.

Moreover, these relations show that v o ¢ is the identity map and it is
obvious that ¢ o4 is the identity map too. ]
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4.4 Universal central extension of sl(m,n, D) when
m+n <5

In this section we will find the universal central extension of sl(m,n, D) when
3 <m+n < 5. We need some preliminary results first. Recall that [D, D] is
the subalgebra generated by the elements a 4 b — (—1)'“”b‘b F a. It happens
that in superdialgebras, this is not necessarily an ideal.

Lemma 4.4.1. Let D be a unital superdialgebra. We have that D — [D, D] <
[D,D] - D, [D,D] -~ D< D+ [D,D] and [D, D] 4 D = D - [D, D]. Then
the ideal generated by the elements a < b — (1)1 - q ds just [D, D] 4 D.

Proof. The results follow, respectively, from the identities

a—[bc] =[a,b] 4c—(=D)Plel[a 4 ¢ b] 41,
[a,b] - ¢ = —(=1)Pllclg [, B] + (=1)Plel1 - [a - ¢, ],
[a,b] 4 ¢ = —(=1)lPly — [a, ¢] + [a,b - d].

O]

Definition 4.4.2. Let D be a superdialgebra and m a positive integer. Let
T, be the ideal of D generated by the elements ma and a 4 b— (—1)l9l1®lp |- a.
We denote the quotient

We claim that stl(m,n, D) ® stl(m,n, D) =~ stl(m,n, D) & W(m,n, D)
where W(m,n, D) is an R-supermodule which depends on m and n and the
Leibniz superalgebra structure is given by an R-supermodule homomorphism
@: stl(m,n, D) ® stl(m,n, D) — stl(m,n, D) ® W(m,n, D) in the conditions
of Proposition Then we will define an inverse.

4.4.1 Case of sl(4,0, D)

Let W(4,0,D) be the direct sum of six copies of Dy. The elements will
be represented by v;ji(a) where 1 < 4,7, k,1 < 4 are distinct, a € D and
|vijri(a)| = |a|. They will be related by R-linearity, the equivalence relations
of Dy and by vijri(a) = —vikj(a) = —vgjul(a) = vij(a).
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Theorem 4.4.3. The universal central extension of s1(4,0, D) is st((4,0, D)@
DS.

Proof. Let ¢: 5tl(4,0, D) ® stl(4,0, D) — stl(4,0, D) ® DS be the homomor-
phism defined on generators by Fjj(a) ® Fi(b) — vijri(a - b), if 4,7, k,1 are
distinct and Fjj(a) ® Fji(b) — [Fij(a), Fiu(b)], otherwise. It is obvious that it
conserves the grading and that the kernel is inside the centre, so we have to
check if ¢ sends the relation of the non-abelian tensor product to zero.

The relation on generators is given by

Fij(a) ® [Fia(b), Fu(e)] — [Fy(a), Fr(b)] ® Falc) + (Gen)
( )‘Fkl(b)HFst( )‘[sz(a)a st(C)]®Fkl(b)

If is not involved any preimage of W(4,0, D), then the image is just the
Leibniz identity on stl(4,0, D). To have any v;;ri(a) we need that in 7, j, k, 1, s, t
one element appears three times and the others three once. Using the relation
vijki(a = [b,¢]) = 0 = vir([a, b] 4 ¢) and that we do not need to worry about
signs (vijri(2a) = 0) it is easy to go through the different possibilities and
check that they all vanish. Therefore, the bracket defined on stl(m,n, D)@ DS
is the standard bracket unless if 4, j, k,[ are distinct, then [Fj;(a), Fi(b)] =
vijki(a = b). Moreover, the elements v;;x;(a) are in the centre.

Now we define : stl(4,0, D) ® DS — stl(4,0, D) ®stl(4,0, D) by F;j(a) —
Fi(a)®F};(1) and vjg(a) — Fij(a)®@F(1). It is well defined for the elements
of stl(4,0, D) (as in Theorem so we have to check if it is well defined for
the elements of DS.

Fij(a) ® Fr(1) = [Fu(a), Fi;(1)] ® Fiu(1) = —Fy(a) ® Fi;(1),
Fij(a) ® Fiu(1) = Fij(a) ® [Fri(1), Fiu(1)] = —Fij(a) ® Fu(1).

So vijri(a) = —varj(a) = —vrja(a) = viij(a). Now,
0= [F;(a )®sz(b),Fw( ) ® Fiu(1)] = [Fij(a), Fji(0)] ® [F5(c), Fru(1)]
= [[Fw( ) )]7FZ]( )]®Fkl( )
= [[Fij(a), F ( )], [Fir(c), Fir;(1)]] ® Fia(1)

= Fij(a 4 b c+ (—1)lallbiFalle+ble e 41 0) @ By (1),
Choosing b = ¢ = 1 we have Fj;(2a) ® Fj,;(1) = 0. Choosing ¢ = 1, we have

Fiila 4 b+ (=1)alllp - ) @ Fy(1) = 0.
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Therefore, 1 is a well-defined R-supermodule homomorphism. Moreover,
the identity

Fij(a) ® Fiu(b) = Fij(a) ® [Fri(b), Fy(1)] = —(=1)' F (b 1- a) ® Fy(1)
= Fij(a 4 b) ® Fy(1),

shows that 1 is a Leibniz superalgebra homomorphism and that ¢ and v are
inverses to each other. O

4.4.2 Case of s(3,1, D)

Let W(3,1, D) be the direct sum of six copies of II(D3), where II denotes the
parity change functor. The elements will be represented by v;jx(a) with the
same relations as in the previous case.

Theorem 4.4.4. The universal central extension of s1(3,1, D) is stl(3,1, D)®
I1(D5)S.

Proof. Assuming that |i| = 0, we can adapt the proof of Theorem m In
the case that |i| = 1,

0 = [Fr(a) ® Fip(1), Fi;(1) ® Fiu(1)],

gives us that Fj;(2a) ® Fj;(1) = 0, and we adapt again the proof of Theo-
rem [4.4.3 ]

4.4.3 Case of sl(2,2, D)

Let W(2,2, D) be the direct sum of four copies of Dy and two copies of Dy.
The elements will be represented by v;jri(a) related by vijni(a) = —vinj(a) =
—vgjir(a) = vij(a), where vi3g4(a) and vzi42(a) will represent the copies of
Dq and the rest will be the copies of Dy. Note that v;ji(a) represents one
copy of Dy if and only if |i| + [j| = 1 = |k| + |l] and |i| + |k| = 0 = || + |U].

Theorem 4.4.5. The universal central extension of s1(2,2, D) is stl(2,2, D)@
D; ® DE.

Proof. Let Sy be the group of permutations of 4 elements and let o: Sy —
{—1,1} be the map that sends (1423),(2314), (3241), (4132) to —1 and the
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rest to 1. Note that if o(ijkl) = —1, then v;j(a) represents a copy of Dy.
Let us consider the homomorphism

@: 5tl(2,2,D) ®stl(2,2, D) — stl(2,2, D) ® D3 ® DE,
defined on generators by
(=1)bo(ijkl)vik(a — b) if 4, j, k, | are distinct,

Fij(a) ® F(b) — {[Fij(a),Fkl(b)] otherwise.

Again we need to check that ¢ sends the relation of the non-abelian ten-
sor product to zero. If v;jii(a) represents an element of Do, then the proof
is similar as the proof given in Theorem Therefore, we have to check
if relation vanishes when an element of Dy appears. Avoiding sym-
metries, the choices that we have to check are (i, j, k,1,s,t) = (1,3,2,1,1,4),
(1,3,2,3,3,4), (1,3,1,4,2,1) and (1,3,3,4,2,3). It is a straightforward com-
putation and we omit it.

Now we define 1: 5tl(2,2, D) ® Di @ D3 — stl(2,2, D) ® stl(2,2, D) by
Fij(a) — Fi(a) ® Fi;(1) and vijg(a) — o(ijkl) Fij(a) ® Fj(1). To check that
is a well-defined homomorphism we can follow the proofs of Theorem [4.3.1
and Theorem and we will cover all the cases except the two copies of Dy.
In that case, we have that

Fij(a) ® Fia(1) = [Fu(a), Fi;(1)] ® Flu(1) = —Fy(a) ® Fi;(1),
Fij(a) ® Fiu(1) = Fij(a) ® [Fri(1), Fu(1)] = —Fij(a) ® Fy(1).
So vijri(a) = —vikj(a) = —vgju(a) = vigij(a). Then,

0 = [F(a) ® Fji(b), Fij(c) ® Fu(1)] = [Fi(a), Fji(0)] ® [Fij(c), Fia(1)]
=Fjla—b-c+ (=1)(al+ DD +(el+D)al+ 1D ¢ |- p - g) @ Fiy(1),
choosing ¢ = 1 we have that
Fijla 4 b— (=1)lalllp - ) @ Fy(1) = 0.
To see that v is a Leibniz superalgebra homomorphism,
Fij(a) ® Fiu(b) = Fij(a) ® [Fri(b), Fu(1)] = [Fij(a), Fri(b)] ® Fu(1)
= — (=D E (b - ) ® Fy(1)
= —(-1)PIF;(a 4 b) @ Fu(1)
= (1) Fyy(a = 5) ® Fa(1).
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The previous relation also proves that 1) o ¢ is the identity map. Moreover, it
is straightforward that ¢ o4 is the identity map, completing the proof. 0

4.4.4 Case of 5((3,0,D)

Let W(3,0, D) be the direct sum of six copies of D3. The elements will be
represented by v;jpe(a) where pg = ik or kj and {i,j,k} = {1,2,3} and they
will be related by R-linearity, the equivalence relations of D3 and the additional
relation vijpq(a) = —vpgij(a).

Theorem 4.4.6. The universal central extension of s1(3,0, D) is stl(3,0,D)®
DS.

Proof. Let be the homomorphism
©: 5tl(3,0, D) ®@stl(3,0, D) — stl(3,0, D) ® D,
defined on generators by

Vijpg(a — ) if pq =ik or Fkj

Fij(a) ® Fpq(b) — {[Fi~(a) Fpy(b)] otherwise.

To check that ¢ is well defined we only need to check that relation |[(Gen);
is followed when a vjjpe(a) appears. It is immediate that

Pz @[y, z]) = —(~)"p(z ® [z,9)),

so the non straightforward cases are

e(Fji(a) ® [Fji(b), Fir(c)]) = vjijr(a 40— c)
= k(a4 (0 F 0)) = =(=1)"v;5(a 4 ¢ 4 b)
= —(=1)Plly(Fj(a - o) ® Fjs(b))
= ¢([Fji(a), Fji(b)] ® Fir(c)
— (=) [Fyi(a), Fir(0)] @ Fyi(D)),



106 4 Universal central extensions of Leibniz superalgebras

and

o(Fij(a) @ [Fri(b), Fij(c)]) = vijrj(a 4 b c)
= —(— )|a”b‘vkﬂj((b — a) — C)

—(-1 >'a”b‘ (Fij(b F @) ® Fyj(0))
%0( a), Fri(b)] ® Fij(c)

- (= 1)|bllcl[ Fij(a), Fij(0)] ® Fri(b)).

Now we define 1: stl(3,0, D) ® D§ — stl(3,0, D) ®stl(3,0, D) by F;;j(a) —

Fir(a) ® Fi;(1) and vijpq(a) — Fij(a) ® Fpq(1). There is only one choice for k,
but we need to check that it is well defined for elements of st((3,0, D), since

the arguments of Theorem do not hold.
Then,

Fir(a 40) ® Fij (1) = —Fij(a 4 b) @ [Fij (1), Fjr(1)]
= —[Fir(a), Fky(b)]®[ij( ) Fie(1)]
+

= Fir(a) ® (Fij(b) + Fij(b)) — Fir(a) ® Fi;(b)
= Zk( ) ® Fk]( )7
and similarly for Fj,(a 4 b) ® Fji(1) = Fix(a) ® Fj;(b). Moreover,

Fij(a) ® Fij(b) = Fij(a) @ [Fik(b), Fi;(1)] = 0.
For the elements of DS,
0 = [Fij(a), Fir(1)] ® [Fir(1), Fri(1)] = Fij(a) ® Fig(—3) = Fi;(3a) ® Fix(1),
and

0 = [Fij(a), Fji(b)] ® [Fij(c), Fir(1)]
= Fij(a 4 b c+ (—1)lalbliFlalle+bllee b1 ) @ Fyp(1) — Fi(a — b) ® Fiy(c),

choosing b =c =1,
Fig(a) ® Fi(1) = —Fij(a) ® Fig(1),
and choosing ¢ = 1,

Fij(—a <4 b+ (=1)lp - a) @ Fip(1) = 0.
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To complete the proof,

Fij(a) ® Fig(b) = —F(a) ® [Fjx(b), F;(1)] = —Fir(a 4 b) ® Fi;(1)
= Fij(a - b) ® Fy,(1).

4.4.5 Case of sl(2,1, D)
In this case, W(2,1,D) = 0.
Theorem 4.4.7. The universal central extension of sl(2,1, D) is stl(2,1, D).

Proof. Defining the homomorphisms as in Theorem we can recover the
relations and additionally

0 = [Fij(a), Fix(b)] ® [Fi(1), Firi(1)] = Fij(a) ® Fye(2 + (1)l kD),

Therefore, if |i| = 1 or |k| = 1, we have the relation Fjj(a) ® Fjx(1) = 0. If
|j] = 1, we do the same calculation but for Fy(a) ® Fj;(1). It is similar for
sz(a)®Fk](1) ]

4.5 Hochschild homology and Leibniz homology

In this section we adapt to the superalgebra case the definition of Hochschild
homology of dialgebras introduced in [7] and we relate it with the universal
central extension of sl(m,n, D). From now on, we assume that D is R-free.
Let D be a superdialgebra with an R-basis containing the bar-unit. The
boundary map d,,: D®*"*! — D®" is defined on generators by
n—1
A0 ® - ®an) = Y. (a0® ®a; 4 a1 @+ Rap)
i=0
' n—1 .
+ (1)l Zizo lail(g, - ap @ a1 ® - @ an_1),

where a; € D. The Hochschild homology of superdialgebras, denoted by
HH. (D), is the homology of the chain complex formed by the boundary
maps dy. Let I be the ideal of D generated by the elements of the form
a®b-Hc—a®br c. We define

Ker d;
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Theorem  4.5.1. There is an isomorphism of R-supermodules
HL; (sl(m,n, D)) = HHS{(D) @ W(m,n, D).

Proof. We have the following diagram

D®D d

ol

0 —— HLy (sl(m,n, D)) —> stl(m, n, D) ® stl(m, n, D) = sl(m,n, D) — 0,

0 — HHS; (D) ® W(m,n, D) —

where u(a@b) = Flj(a) @Fjl(b) — (—1)|aHb|Flj(b [ CL) ®Fjl(1), u(vijkl(a)) =
Ej (CL) ® Fkl(b) and
a®b ifi=4 and k=1
Stra (Fij(a) ® Fru(b)) < vijr(a = b) if it makes sense depending on m,n

0 otherwise.

It is a straightforward computation that poStry and Fy1(—)oStr; are the iden-
tity maps and that the diagram is commutative. Then the restriction of Stra
to the kernel of w is also a split epimorphism, with p restricted to the kernel of
dy as section. Let us see that these restrictions are indeed isomorphisms. An
element in the kernel of w is a sum of elements of the form Fj;(a)® F};(b) plus
elements of W(m,n, D). Any element of Kerw can be written as an element
of Im pu plus 75" Fii(a;) ® Fi (1), since

Fij(a) ® Fji(b) = Fii(a)® Fij(b) — (—1)Iel+EHIDWHEHD fy (b - a) @ F1y(1),
and
Fij(a) ® Fji(b) = Fij(a) @ Fju(b) — (=D)L E;1 (b - a) @ Fiy(1) +
(D) F (b - a) © Fiy(1).

Furthermore, if it is in the kernel of w, all the a; must be zero. Then the
restriction of u to the kernel of d; is surjective. O

Remark 4.5.2. The proof given in [2I] can also be adapted since the assump-
tions on the characteristic of the ring are not used, but we rather give our
version of the proof to show its relation with non-abelian tensor product.
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4.6 Concluding remarks

Combining the results obtained above we present the following summarizing
theorems

Theorem 4.6.1. Let R a unital commutative ring and D an associative unital
R-superdialgebra with an R-basis containing the bar-unit. Then,

(HHS: (D) form+n=5o0rm=2n=1,
HHS; (D) ® D§ form =3,n=0,
HL; (sl(m,n, D)) = { HHS(D) @ D§ form =4,n=0,
HHS; (D) ®II(D3)%  form=3,n=1,
HHS, (D) ® D@ D2 for m = 2,n = 2,

where Dy, is the quotient of D by the ideal mD + ([D,D] - D) (Defini-
tion and 11 is the parity change functor.

Theorem 4.6.2. Let R a unital commutative ring and D an associative unital
R-superdialgebra with an R-basis containing the bar-unit. Then,

(0 form+n=5o0rm=2n=1,
DS form=3,n=0,
HL; (st{(m,n, D)) = { D§ form =4,n=0,

(D2)®  form=3n=1,
D%@Dg form =2 n=2,

where D, is the quotient of D by the ideal mD + ([D,D] -4 D) (Defini-
tion and II is the parity change functor.

Remark 4.6.3. We recall that in the case that m = n = 2, W(2,2, D) might
not be zero even if char(R) # 2 contradicting [I8, Theorem 6.2].

Acknowledgments

The authors were supported by Ministerio de Economia y Competitivi-
dad (Spain), grants MTM2013-43687-P and MTM2016-79661-P(European
FEDER support included) and by Xunta de Galicia, grant GRC2013-045 (Eu-
ropean FEDER support included). The first author was also supported by



110

4 Universal central extensions of Leibniz superalgebras

FPU scholarship, Ministerio de Educacién, Cultura y Deporte (Spain) and a
Fundacién Barrié scolarship.

We thank the referee for the helpful comments and suggestions which made

the paper more enhanced.

Bibliography

1]

2]

[10]

A. Bloh, On a generalization of the concept of Lie algebra, Dokl. Akad.
Nauk SSSR 165 (1965), 471-473.

R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces,
Topology 26 (1987), no. 3, 311-335, With an appendix by M. Zisman.

H. Chen and N. Guay, Central extensions of matriz Lie superalgebras
over Z/2Z-graded algebras, Algebr. Represent. Theory 16 (2013), no. 2,
591-604.

H. Chen and J. Sun, Universal central extensions of sly,, over Z/2Z-
graded algebras, J. Pure Appl. Algebra 219 (2015), no. 9, 4278-4294.

G. J. Ellis, A nonabelian tensor product of Lie algebras, Glasgow Math.
J. 33 (1991), no. 1, 101-120.

R. Felipe, N. Lépez-Reyes, and F. Ongay, R-matrices for Leibniz algebras,
Lett. Math. Phys. 63 (2003), no. 2, 157-164.

A. Frabetti, Leibniz homology of dialgebras of matrices, J. Pure Appl.
Algebra 129 (1998), no. 2, 123-141.

Y. Gao and S. Shang, Universal coverings of Steinberg Lie algebras of
small characteristic, J. Algebra 311 (2007), no. 1, 216-230.

X. Garcia-Martinez, E. Khmaladze, and M. Ladra, Non-abelian tensor
product and homology of Lie superalgebras, J. Algebra 440 (2015), 464—
488.

X. Garcia-Martinez and M. Ladra, Universal central extensions of
sl(m,n, A) of small rank over associative superalgebras, Turkish J. Math.,
2017, doi:10.3906 /mat-1604-3.



4.6

Bibliography 111

[11]

[12]

[13]

H. Garland, The arithmetic theory of loop groups, Inst. Hautes Etudes
Sci. Publ. Math. (1980), no. 52, 5-136.

A. V. Gnedbaye, A non-abelian tensor product of Leibniz algebras, Ann.
Inst. Fourier (Grenoble) 49 (1999), no. 4, 1149-1177.

Q. Jiang, R. Shen, and Y. Su, Second homology groups and universal
coverings of Steinberg Leibniz algebras of small characteristic, Comm.
Algebra 37 (2009), no. 2, 548-566.

V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8-96.

C. Kassel and J.-L. Loday, Eztensions centrales d’algébres de Lie, Ann.
Inst. Fourier (Grenoble) 32 (1982), no. 4, 119-142.

M. K. Kinyon and A. Weinstein, Leibniz algebras, Courant algebroids,
and multiplications on reductive homogeneous spaces, Amer. J. Math. 123
(2001), no. 3, 525-550.

R. Kurdiani and T. Pirashvili, A Leibniz algebra structure on the second
tensor power, J. Lie Theory 12 (2002), no. 2, 583-596.

D. Liu, Steinberg-Leibniz algebras and superalgebras, J. Algebra 283
(2005), no. 1, 199-221.

D. Liu and N. Hu, Steinberg unitary Liebniz algebras, Linear Algebra
Appl. 405 (2005), 279-303.

D. Liu and N. Hu, Leibniz superalgebras and central extensions, J. Algebra
Appl. 5 (2006), no. 6, 765-780.

D. Liu and N. Hu, Universal central extensions of the matrix Leibniz
superalgebras sl(m,n, A), Comm. Algebra 35 (2007), no. 6, 1814-1823.

J.-L. Loday, Une version non commutative des algébres de Lie: les al-
gébres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3-4, 269-293.

J.-L. Loday, Dialgebras, Dialgebras and related operads, Lecture Notes in
Math., vol. 1763, Springer, Berlin, 2001, pp. 7—66.

J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz
algebras and (co)homology, Math. Ann. 296 (1993), no. 1, 139-158.



112

4 Universal central extensions of Leibniz superalgebras

[25]

[26]

J. M. Lodder, Leibniz cohomology for differentiable manifolds, Ann. Inst.
Fourier (Grenoble) 48 (1998), no. 1, 73-95.

A. V. Mikhalev and 1. A. Pinchuk, Universal central extensions of the
matrixz Lie superalgebras sl(m,n, A), Combinatorial and computational
algebra (Hong Kong, 1999), Contemp. Math., vol. 264, Amer. Math. Soc.,
Providence, RI, 2000, pp. 111-125.

J. Milnor, Introduction to algebraic K -theory, Princeton University Press,
Princeton, N.J.; University of Tokyo Press, Tokyo, 1971, Annals of Math-
ematics Studies, No. 72.

E. Neher, An introduction to universal central extensions of Lie superalge-
bras, Groups, rings, Lie and Hopf algebras (St. John’s, NF, 2001), Math.
Appl., vol. 555, Kluwer Acad. Publ., Dordrecht, 2003, pp. 141-166.

S. Shang, H. Chen, and Y. Gao, Central extensions of Steinberg Lie su-
peralgebras of small rank, Comm. Algebra 35 (2007), no. 12, 4225-4244.

G. M. Tuynman and W. A. J. J. Wiegerinck, Central extensions and
physics, J. Geom. Phys. 4 (1987), no. 2, 207-258.

W. L. J. van der Kallen, Infinitesimally central extensions of Chevalley
groups, Lecture Notes in Mathematics, Vol. 356, Springer-Verlag, Berlin,
1973.

V. S. Varadarajan, Supersymmetry for mathematicians: an introduction,
Courant Lecture Notes in Mathematics, vol. 11, New York University,
Courant Institute of Mathematical Sciences, New York; American Math-
ematical Society, Providence, RI, 2004.



Chapter 5

A non-abelian exterior
product and homology of
Leibniz algebras

Abstract

We introduce a non-abelian exterior product of two crossed modules of Leibniz al-
gebras and investigate its relation to the low-dimensional Leibniz homology. Later
this non-abelian exterior product is applied to the construction of an eight term exact
sequence in Leibniz homology. Also its relationship to the universal quadratic func-
tor is established, which is applied to the comparison of the second Lie and Leibniz
homologies of a Lie algebra.

Reference

G. Donadze, X. Garcia-Martinez, and E. Khmaladze, A non-abelian exte-
rior product and homology of Leibniz algebras, Rev. Mat. Complut., 2017,
doi:10.1007/s13163-017-0237-2.

5.1 Introduction

Leibniz algebras were first defined in 1965 by Bloh [2] as a non skew-symmetric
analogue of Lie algebras but they became very popular when in 1993 Loday
rediscovered them in [22]. One of the main reasons that Loday had to introduce

113
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them was that in the Lie homology complex the only property of the bracket
needed was the so called Leibniz identity. Therefore, one can think about this
notion as “non-commutative” analog of Lie algebras and study its homology.
Since then, many authors have been studying them obtaining very relevant
algebraic results ([24], [25]) and due their relations with Physics ([20], [26])
and Geometry ([17]). Many results of Lie algebras have been extended to the
Leibniz case. As an example of these generalizations, Gnedbaye [18] extended
to Leibniz algebras the notion of non-abelian tensor product, defined by Brown
and Loday in the context of groups [5] and by Ellis in the context of Lie
algebras [I5]. The non-abelian tensor product was firstly introduced as a
tool in homotopy theory, but it can give us nice information about central
extensions and (co)homology.

The notion of non-abelian exterior product was introduced in groups by
Brown and Loday [4] and also extended to the Lie case by Ellis [15], [14]. The
main objective of this manuscript is to give a proper generalization of this
concept to Leibniz algebras. Given two ideals a and b of a Lie algebra g, the
non-abelian exterior product is the quotient of the non-abelian tensor product
ax b by the elements of the form cx*c, where ¢ € an b. This makes sense in Lie
theory since these are elements of the kernel of the homomorphism g+ g — g,
g=g — |[g,d] for all g,¢’ € g, but this is not true in Leibniz algebras due
to the lack of antisymmetry. Nevertheless, the non-abelian tensor product
of two ideals of a Leibniz algebra, has some duplicity in the elements of the
intersection, so this will be the way we can affront the problem. In fact, our
definition of the non-abelian exterior product is given for crossed modules of
Leibniz algebras, which is more general concept than ideals of Leibniz algebras.

The paper is organized as follows. In Section [5.2] we recall some basic
definitions and properties of Leibniz algebras and Leibniz homology. In Sec-
tion [5.3| we introduce the non-abelian exterior product and we study its con-
nections with the second Leibniz homology. In Section [5.4] we obtain an eight
term exact sequence using the non-abelian exterior product. In Section [5.5|we
explore the relations with Whitehead’s universal quadratic functor. Finally,
in Section we compare the second Leibniz homology and the second Lie
homology of a Lie algebra.
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5.2 Leibniz algebras and homology

Throughout the paper K is a field, unless otherwise stated. All vector spaces
and algebras are considered over K, all linear maps are K-linear maps and ®
stands for ®k.

Definition 5.2.1 ([22]). A Leibniz algebra is a vector space g equipped with
a linear map (Leibniz bracket)

[, ]:e®ga—g
satisfying the Leibniz identity

[z, [y, 2]] = [[=, 9], 2] — [[=, 2], 4],
for all z,y,z € g.

A homomorphism of Leibniz algebras is a linear map preserving the
bracket. The respective category of Leibniz algebras will be denoted by Lb.

A subspace a of a Leibniz algebra g is called (two-sided) ideal of g if
[a,z], [z,a] € a for all a € a and x € g. In this case the quotient space g/a
naturally inherits a Leibniz algebra structure.

An example of ideal of a Leibniz algebra g is the commutator of g, denoted
by [g,¢], which is the subspace of g spanned by elements of the form [z,y],
x,y € g. The quotient g/[g, g] is denoted by g* and is called abelianization
of g. One more example of an ideal is the center C(g) = {ce g | [z,c] =0 =
[c,z], for all z € g} of g. Note that both g*" and C(g) are abelian Leibniz
algebras, that is, Leibniz algebras with the trivial Leibniz bracket [, | = 0.

Clearly, any Lie algebra is a Leibniz algebra and conversely, any Leibniz
algebra with the antisymmetric Leibniz bracket is a Lie algebra. This is why
Leibniz algebras are called non-commutative generalization of Lie algebras.
Thus, there is a full embedding functor Lie — Lb, where Lie denotes the
category of Lie algebras. This embedding has a left adjoint £ie: Lb — Lie,
called the Liezation functor and defined as follows. Given a Leibniz algebra
g, Lie(g) is the quotient of g by the subspace (that automatically is an ideal)
spanned by elements of the form [z, z], x € g (see for example [21]).

The original reason to introduce Leibniz algebras was a new variant of
Lie homology, called non-commutative Lie homology or Leibniz homology,
developed in [23] 24] and denoted by HL,. Let us recall the definition of
HL,.
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Given a Leibniz algebra g, consider the following chain complex:

d d — d d d
CLi(g)= - =g S 5... 55K,

where the boundary map d is given by
x) =0, foreach z € g;

= (_1)j(x1®"‘®xi71®[xi,xj]®xi+1®"'®£j®"'®$n)a

1<i<j<n
for x1,...,x, € g and n > 1. The n-th homology group of g is defined by

HLn(g) = Hn(CL*(g))v n = 0.

5.2.1 Homology via derived functors

Let X be a set and My be the free magma on X with a binary operation | , |.
Denote by K(Mx ) the free vector space over the set Mx. In a natural way we
can extend [, ] to a binary operation [, | on K(Mx). Thus K(Mx) is the free
algebra on X (see e.g. [28]). For any subset S € K(Mx), let N'1(S) denote the
vector subspace of K(Mx) generated by S and {[z, s],[s,z] | v € Mx,s € S}.
Let N (S) = Z;}1]\”‘(5) where for i > 1, N*(S) = NY(N*=1(S)). In particular,
consider Sx ~ {lz, [y, z]] = [l=,y], 2] + [[z,2],y] | =,y,2z € Mx} and denote
K(Mx)/N(Sx) by §(X). In other words, F(X) is the quotient of K(Mx) by
the two-sided ideal generated by the subset Sx. Clearly §(X) is a Leibniz
algebra, called the free Leibniz algebra on the set X. It is easy to see that the
construction X — §F(X) defines a covariant functor

§: Set — Lb,

which is left adjoint to the natural forgetful functor {: Lb — Set, where Set
denote the category of sets.

Remark 5.2.2. Let Vect denote the category of vector spaces. There is a
functor §1: Vect — Lb assigning to each vector space V the free Leibniz
algebra over V (see [21]). Then § = §1 0 F2, where §2: Set — Vect associates
to each set X the vector space with basis X.
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It is well known that every adjoint pair of functors induces a cotriple (see
for example [I, Chapter 1] or [19, Chapter 2]). Let F = (F,§,7) denote the
cotriple in Lb defined by the adjunction § 4 4, that is, F = §iU: Lb — Lb,
7: F — 1pp is the counit and § = Fuil: F — F?, where u: lgey — UF is the
unit of the adjunction. Then, given an endofunctor ¥: Lb — Lb, one can
consider derived functors EEZ : Lb — Lb, n > 0, with respect to the cotriple
F (see again [I]). In particular, Leibniz homology can be described in terms
of the derived functors of the abelianization functor 2b: Lb — Lb, defined by
2Ab(g) =

Theorem 5.2.3. Let g be a Leibniz algebra. Then there is an isomorphism
HL,1(g) = LEAb(g), n=0.

Proof. Let f. be the F-cotriple simplicial resolution of g, that is, f. =
(fx(g),dl, s?") is the simplicial Leibniz algebra with

%

fu(g) = F*"*(g) = F(F"(9)),
d? = Fi(Tpn—i), s'=F(0gn=i), 0<i<n, n=0.

Applying the functor C'L, to f. dimension-wise, we get the following bi-
complex:

d —d d

P P

d —d d

fo f1 fo «——

d —d d

K K K e oo,

where the horizontal differentials are obtained by alternating sums of face
homomorphisms. Since K is a field, f* — ¢g®" is an aspherical augmented
simplicial vector space (see for example [10, Lemma 2.3] or [I1, Lemma 2.1]),
for each n = 1. Therefore, we have an isomorphism:

HL,(g) = H,(Tot(CLy(5+))), n = 0.
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On the other hand we have the following spectral sequence:
E;%q = Hy(fp) = Hptq(Tot(CLk(fs)))-
Since f,, is a free Leibniz algebra for each n > 0, we obtain:

K for ¢q=0,

E;q = 1 fo/lfp: fp] for ¢=1,
0 for ¢>1.

This spectral sequence degenerates at E? and

K for ¢g=0 and p=0,
2 _ 0 forr ¢q=0 and p>0,
b= Hy@b(j,) for g=1,
0 for ¢>1.
Thus, the spectral sequence argument completes the proof. O

Remark 5.2.4. The F-cotriple simplicial resolution of a Leibniz algebra g is a
free (projective) simplicial resolution of g and by [Il, 5.3], if f, is any of them,
then there are natural isomorphisms

HLn(g) = mpo1(Ab()), n> 1.

5.2.2 Hopf formulas

Theorem enables us to prove Hopf formulas for the (higher) homology of
Leibniz algebras, pursuing the line and technique developed in [I3] for the de-
scription of higher group homology via Hopf formulas (see [3]). In this respect
herewith we state two theorems without proofs. In fact they are particular
cases of [7, Theorem 15] describing homology of Leibniz n-algebras via Hopf
formulas. Note also that, of course, these results agree with the categorical
approach to the problem given in [I6] for semi-abelian homology.

An extension of Leibniz algebras 0 — v — § — g — 0 is said to be a free
presentation of g, if f is a free Leibniz algebra over a set.

Theorem 5.2.5. Let 0 —» v — §f — g — 0 be a free presentation of a Leibniz
algebra g. Then there is an isomorphism:

HLg(g) =~
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Theorem 5.2.6. Let t and s be ideals of a free Leibniz algebra f. Suppose that
f/t and f/s are free Leibniz algebras, and that g = f/(t + s). Then there is an
isomorphism:

tnsn[f,f]
[t,s] + [t s, f]

lle

HL3(g)

5.3 Non-abelian tensor and exterior product of
Leibniz algebras

5.3.1 Leibniz actions and crossed modules

Definition 5.3.1. Let m and n be Leibniz algebras. A Leibniz action of m
on n is a couple of bilinear maps m x n — n, (m,n) — ™n, and n x m — n,
(n,m) — n™ satisfying the following axioms:

[m,m']n _ m(m/n) + (mn)m/’ m[n’nl] _ [mn’ n/] . [mn/’nL
n[m,m’] _ (nm)m' _ (nm’)m7 [n’ nl]m _ [nm’ n/] + [n’nlm]’
m(m/n) _ _m<nm/)7 [n’ mn/] _ _[n’ n/m]’

for each m,m’ € m, n,n’ € n. For example, if m is a subalgebra of a Leibniz
algebra g (maybe g = m) and n is an ideal of g, then the Leibniz bracket in g
yields a Leibniz action of m on n.

Definition 5.3.2. A Leibniz crossed module (m,g,n) is a homomorphism of
Leibniz algebras n: m — g together with an action of g on m such that

fm) = [z,n(m)],  n(m®) = [n(m), ],

mg = [my,mg] = m?(m),

n(
n(m1)

where € g and m,mq,mg € m.

Example 5.3.3. Let a be an ideal of a Leibniz algebra g. Then the inclusion
i: a — g is a crossed module where the action of g on a is given by the bracket
in g. In particular, a Leibniz algebra may be regarded as a crossed module in
two ways, as the inclusion i: 0 — g and as the identity map 14: g — g.
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5.3.2 Non-abelian tensor product

Let m and n be Leibniz algebras with mutual actions on one another. The
non-abelian tensor product of m and n, denoted by m » n, is defined in [I§] to
be the Leibniz algebra generated by the symbols mn and n+m, for all m e m
and n € n, subject to the following relations:

(la) k(m=n)=km=n=m=kn,

(Ib) k(n#xm) =kn+=m = n*km,

(2a) (m+m)xn=m=n+m=n,

(2b) (n+n')xm=n*m+n'xm,

(2¢) mx(n+n)=msn+m=n,

(2d) nx(m+m')=n+m+n=m,

(3a) mx[n,n']=m"xn’ —m" xn,

(3b) nx[m,m]=n"xm —n" xm,

¢) [m,m]xn="n+m —msn™

(3¢) [mym]wn= Tnwm —men™,
n,n'lxm = "mxn' —nxm"

(3d) [r,n)sm= "men —nem®,

a) m* "n=—-mxn"

(40) mx ™ "

(4b) nx "m=—-nrm",

(5a) m"x "n/ =[men,m «n']= "nsm",

(5b) "mxn™ =[nxm,n +m']=n"x "'m/

(5¢) m"«n™ =[mxn,n’ =m']= "nx "m/

(5d) "mx ™0’ = [nxm,m xn'] = 0™ xm™,

for each k € K, m,m' € m and n,n € n.

There are induced homomorphisms of Leibniz algebras 7q,: m*n — m and
Tn: Mx . — n where 7y(m *n) = m", Tm(nxm) = "m, y(m xn) = "n and
Ta(n *m) = n™. Note that, in the case of compatible actions (see [18] for the
definition), both 7, and 7, are crossed modules of Leibniz algebras.

5.3.3 Non-abelian exterior product

Let us consider two Leibniz crossed modules n: m — g and p: n — g. Then
there are induced actions of m and n on each other via the action of g. There-
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fore, we can consider the non-abelian tensor product m x n. We define mon
as the vector subspace of m * n generated by the elements m xn’ —n = m’ such

that 7(m) = p(n) and n(m’) = p(n’).

Proposition 5.3.4. The vector subspace m on is contained in the center of
m*n, so in particular it is an ideal of m x n.

Proof. Everything can be readily checked by using defining relations (5a)-(5d)
of m » n. For instance, for any m” € m and n” € n, we have

/ A " ! "on l "on
[msn"—nsm/ m"«n"]=m" « ™ n" — "m'x "n

/ " "
mp,(n) « ,u(n)m/ «
’ " "
_ mn(m) « Ml n(m)m/ « ™l

m” _n

m”n// _ [m’ m/] " n

= [m.m]
=0.

O]

Definition 5.3.5. Let n: m — gand p: n — g be two Leibniz crossed modules
in the previous setting. We define the non-abelian exterior product m A n of
m and n by

mAnNn= .
mon

The cosets of m#n and n*m will be denoted by m An and n A m, respectively.

Remark 5.3.6. Definitions of the non-abelian tensor and exterior products do
not require K to be necessarily a field. It is clear that one can do the same for
a commutative ring with identity.

There is an epimorphism of Leibniz algebras 7: m * n — m A n sending
m*n and n*m to m A n and n A m, respectively.

To avoid any confusion, let us note that, given a Leibniz algebra g, for each
x,y € g, the non-abelian tensor square g * g has two copies of generators of
the form z * y, and exactly these generators are identified in the non-abelian
exterior square g A g. Thus we need to distinguish two copies of inclusions
(identity maps) i1,492: g — g, #; = 92 = 15 and take g A g to be the quotient of
g * g by the relation i1 (z) * ia(y) = i2(x) = i1(y) for each z,y € g.

In the case of a and b being two ideals of a Leibniz algebra g seen as
crossed modules, the non-abelian exterior product a A b is just a x b quotient
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by the elements of the form i1(c) A i2(¢’) — ia(c) A i1(c"), where ¢, ¢ € a n b;
i1:anb—aandis: an b — b are the natural inclusions.
The proof of the following proposition is immediate.

Proposition 5.3.7. Let a and b be two ideals of a Leibniz algebra. There is
a homomorphism of Leibniz algebras

Oap:aAb—anb

defined on generators by Oqp(a A b) = [a,b] and O4p(b A a) = [b,a], for all
a€aandbeb. Moreover, 84y is a crossed module of Leibniz algebras (c.f.
[18, Proposition 4.3]).

Proposition 5.3.8. Let g be a perfect Leibniz algebra, that is, g = [g,9].
Then g*g = g A g and the homomorphism Oy 4: g A g — @ is the universal
central extension of g.

Proof. The last four identities of the non-abelian tensor product immediately
imply that g x g = g A g. Hence, by [I8 Theorem 6.5] the homomorphism
g,9: 9 A g — g is the universal central extension of the perfect Leibniz algebra
g. O

5.3.4 Relationship to the second homology

Let v: g — b be a homomorphism of Leibniz algebras, a and a’ (resp. b and
b’) be two ideals of g (resp. h) such that v(a) < b and ~v(a’) < b’. Since
y(@ana) S bnb, it is easy to see that v induces a homomorphism of Leibniz
algebras a A a/ — b A b’ in the natural way: a A @' — ~v(a) A vy(da’) and
a A aw— () A~y(a), forallaea, a €d.

Now suppose that 0 > a - g —>h —>0and 0 > a — g — b’ — 0 are
extensions of Leibniz algebras, where a’ and g’ are ideals of g, while b’ is an
ideal of h. Then the following naturally induced map g A a’ xarg — gag'is
not in general a homomorphism of Leibniz algebras, but the following sequence

grd xarg -gag -bhaAb -0 (5.3.1)
is exact, in the sense that Im (g’ xaag —gag) =Ker(garg —bhab).

Lemma 5.3.9. Let 0 > a — g — h — 0 be an extension of Leibniz algebras.
Then, the following induced sequence of Leibniz algebras a A g — g A g —
h A bh— 0 is exact.
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Proof. Since the images of the induced homomorphisms a A g — g A g and
gAa — gAg are the same, the statement follows immediately from the

exactness of (5.3.1]). O
Proposition 5.3.10. Let | be a free Leibniz algebra over a set X. Then 0;;

18 injective.
Proof. We will consider the epimorphism 6;5: § A f — [f, ] and show that it
is an isomorphism. Using the same notations as in Subsection [5.2.1] suppose

[Mx, Mx] denotes the subset {[z,y] | =,y € Mx} of Mx and K[Mx, Mx]
denotes the free vector space over the set [Mx, Mx]. Then,

K[Mx, Mx]

Note that for each element m € [Mx, Mx] there are unique = and y in Mx
such that m = [x,y]. Therefore, the following map 7: K[Mx, Mx]| — f A f,
given by [z,y] — z A y for each z,y € M(X), is well defined. We have

[, [y, 2] = [z, y], 2] + [z, 2] y] & 2 A [y, 2] = [,y A 2+ [2,2] Ay = 0,

n
for each z,y,z € Mx. Moreover, if m = > kjx; € Sx with ki,...,k, € K and
i=1
Ti,...,Tn € Mx, then we have:
n n
[z, m] > Zkz(x ATi) =T A (Zklzvz) =0,
i=1 i=1

[m, 2] > ik‘z(% AT) = (ikm) Az =0,
i=1 i=1

for each x € Mx. As a result we have that 7(NV(Sx)) = 0. Thus, 7 induces
a well-defined linear map 7*: [f,f] — § A f. Furthermore, 7 o 6;; = 1,5 and
b5 50 7% = 135 This completes the proof. O

Corollary 5.3.11. Let 0 — v — f — g — 0 be a free presentation of a Leibniz
algebra g. Then there is an isomorphism

g~ 0= [fl/[v ]
Proof. This follows from Lemma [5.3.9] and Proposition [5.3.10 O
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Theorem 5.3.12. Let g be a Leibniz algebra. Then there is an isomorphism
HLy(g) =~ Ker (9979: gAg— g).

Proof. Let 0 - v — f — g — 0 be a free presentation of g. By the Hopf
formula we have

HLx(g) = Ker ([f, f1/[5,f] > g).
Thus, Corollary [5.3.11] completes the proof. O

Proposition 5.3.13. Let 0 - a — g — h — 0 be an extension of Leibniz
algebras. Then we have the following exact sequence

Ker (fag: a A g — a) — HLy(g) — HLy(h)
—a/la,g] = HLi(g) — HL1(h) — 0.

Proof. By Lemmal5.3.9 we have the following commutative diagram with exact
rows

GAg —>gAg——>hah— >0

Ba,g bg,9 0,5

a g h 0.

Now the Snake Lemma and Theorem [5.3.12] yield the exact sequence. 0

Let g e g denote the vector space Coker(gRg ® g A g ® g), where d is the
boundary map in CL.(g). Let d: geg — g A g be a linear map given by
r ey — x Ay, where x o y denotes the coset of t @ y € g® g into g e g. It is
easy to check that § is well defined.

Proposition 5.3.14. The linear map §: ge g — g A g is an isomorphism of
vector spaces.

Proof. We have the following commutative diagram with exact rows:
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g /g, 0]

0 ———>Kerflyyg ——>gArg g g/l9, 9],

0979
where d’ is given by x e y — [x,y] for each z,y € g. Since HLy(g) = Kerd', by
Theorem [5.3.12) we have an isomorphism Kerd' =~ Ker 6, 4. It is easy to verify

that this isomorphism is induced by §. Hence, the above diagram proves the
proposition. [

Remark 5.3.15. Tt is shown in [2I] that the vector space g e g has the Leibniz
algebra structure given by

[l’ ¢ y,x' ® y/] = [ZC,y] ¢ [:E/,y/],

for each z,y, 2,9y’ € g. This fact results from the previous proposition, because
in g A g we have that [z A y, 2’ A ¢/] = [z,y] A [2/,7].

5.4 Third homology and the eight term exact se-
quence

In this section we will use the method developed in [12] to construct an eight
term exact sequence in Leibniz homology.

Lemma 5.4.1. Let 0 — a — g > b — 0 be a split extension of Leibniz
algebras, i.e. there is a homomorphism of Leibniz algebras o: h — g such that
Too = 1y. Then the induced homomorphism of Leibniz algebrasa Ag — gAg
s injective.

Proof. Denote the induced homomorphism of Leibniz algebras a A g —>g A g
by a. We shall show that there exists a linear map g A g — a A g which is
a K-linear splitting for «.. For each element z € g there are unique a € a and
h € b such that = a+ o(h). Let 8: g® g — a A g be a linear map given by
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(a+0o(h)®(d+o(h)) AP o(h)+ana +o(h)Ad for each a,a’ € a and

h,h' € b. It is easy to check that 3 is a well-defined K-linear map and that
B(Imd) = 0, where d: gRg®g — g®g is the boundary map in C'L,(g). Thus,
3 induces the linear map 5: geg — a A g. Now, let §: ge g — g A g be the
linear map defined as in Section Then, the linear map 86 ~': grg — arg
is such that S 1o = laag. Thus, « is injective. ]

Theorem 5.4.2. Let 0 - v — §f — g — 0 be a free presentation of a Leibniz
algebra g. Then there is an isomorphism

HLs(g) = Ker (ew M r).

Proof. According to Remark for computing H L. (g) we can use an exact
augmented simplicial Leibniz algebra

dg )

44
“fe2fi Sfo—0

—> dl

a2 d

such that f; is a free Leibniz algebra over a set, for each ¢ > 0, fp = f and
Kerd) = t. Then, the long exact homotopy sequence derived from the following
short exact sequence of simplicial Leibniz algebras

0— [f*’f*] — fx — Ab(fs) — 0,

implies that H L3(g) is isomorphic to the first homotopy group of the following
simplicial Leibniz algebra

%4 at
< [f2,f2l = [, 1l = [fo. fol-
d2 d%

Hence,
HL3(g) = Kerd} n Kerd} n [fl,fl]/dg( Ker d% n Kerd? n [F2,f2])-
Since HLs(fo) = 0 and HL3(f1) = 0, using Hopf formulas we have

Ker d(l) N [f1,11] = [Kerdé,ﬁ],
Ker d% n Kerd? n [fa, o] = [Kerd? n Kerd?, §5] + [Ker d2, Ker d3].
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Therefore,

HLj(g) = Kerdj n [Kerdg, f1]/d5([Ker dg n Kerd3, fa] + [Ker dj, Ker d7])
= Kerd} n [Ker d(l),fl]/([dg(Kerdg N Kerd?),d5(f2)]
+ [d3(Ker d3), d3(Ker d})])
= Kerdi n [Kerdg, f1]/([Kerdj n Kerd], f1] + [Ker dg, Kerdi]).

Since d} ([Kerdj n Kerdi, f1] + [Kerd, Kerdl]) = 0, we get

[Ker d(l), fl] d}
HL ~ K — . 4.1
3(9) e <[Ker d(l) N Ker d%, fl] + [Ker d(l), Ker d%] [fo, fo] (5 )

. di . .
Furthermore, since 0 — Kerd{ — f; — fo — 0 is a free presentation of

fo which splits, by Proposition [5.3.10] and Lemma the following map
Kerd} A fi — [Kerd},fi], defined by # A y — [z,9], y A > [y,z], for all
x € Kerd} and y € f1, is an isomorphism. Therefore,

[Kerd}, 1] N Kerd} A f1

[Kerd§ n Kerd}, 1] + [Kerd}, Kerdi] — ((Kerd} m Kerdi) A f1) + (Kerdf A Kerdi)
Hence, the exact sequences 0 — Kerd} n Kerd} — Kerd} — Kerd) — 0 and
0 — Kerd} — fi — fo — 0, and (5.3.1)) imply that
[Kerdd, 1]
[Kerd} n Kerdi, f1] + [Ker dj, Ker di]

Now (j5.4.1)) and (5.4.2]) complete the proof. O

Proposition 5.4.3. Let 0 — a — g - b — 0 be an extension of Leibniz
algebras. Then we have the following exact sequence

~ Kerd) A fo =t A f. (5.4.2)

HL3(g) — HL3(h) — Ker (fag: a A g — a) — HLy(g) — HLsy(b)
— a/[a,g] = HL1(g) — HL:1(h) — 0.

Proof. Any free presentation 0 — v — f £ g — 0 of g produces a free
presentation 0 — s — fT—Of) h — 0 of h and an extension 0 >t —>5 > a— 0
of Leibniz algebras. By (5.3.1) we have the following exact sequence

SAtXtAf—osAf—oaAg—0.
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This sequence yields the following exact sequence
tAfosAf—oanrg—0.

Thus, we have the following commutative diagram with exact rows

tAf ————> s Af arg 0

% Os.5 ba,g

T S a

The Snake Lemma and Theorem imply the following exact sequence
HL3(g) — HL3(h) — Ker (fag: a A g — a) = t/[t,f] — s/[s,f].

It is easy to see that

Im (Ker (fag: a A g—a) —t/[t,f]) S
Therefore, we have an exact sequence:

HLs(g) — HL3(h) — Ker (foq: a n g —a) — - ?t[;jf] L5 f[;[%ﬂ.

Using the Hopf formula we get an exact sequence:
HL3(g) > HL3(h) — Ker (fag: a A g — a) — HLy(g) — HLa(h).
The rest of the proof follows from Proposition [5.3.13 0

Corollary 5.4.4. (see [9]) Let 0 — a — g — bh — 0 be a central extension of
Leibniz algebras, i.e. [a,x] = [xz,a] =0 for alla € a and x € g. Then there is
the following exact sequence

HLs(g) — HL3(h) — Coker <a® aba [g,gg] [;g] a)

— HLs(g) — HL2(h) —» a— HLi(g) > HL1(h) — 0,

where n: a®a—>a®[ ](—B[ g]®ai5 given bya@b»—>(a®5,—6®b), where
@=a+[g,g] and b= b+ [g,g] for each a,be€ a.
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Proof. Under the required conditions, the Leibniz algebras a and g act trivially
on each other. Then, by [I8, Proposition 4.2], we have a natural isomorphism

g g
l9.0] "~ [9, 9]
Since a A g is obtained from a x g by killing the elements of the form a =

i(b) —i(a) * b, where a,b € a and i: a — g is the natural inclusion, we get an
isomorphism

@

axg~aQ® R a.

g g
aAg=Coker(n:a®a—a® - @ ——®a).
g Oer(n [9,0] ~ [0, 9] )

Then, by Proposition we conclude the required result. O

5.5 Relationship to the universal quadratic functor

In this section K is a commutative ring with identity (not necessarily a field).
Keeping in mind Remark we will use only those constructions and facts
from the previous sections, which do not require K to be a field.

In the case of Lie algebras, there is a connection between the non-abelian
exterior product of Lie algebras and Whitehead’s universal quadratic func-
tor ([I5]). We can observe it in the Leibniz algebras case too.

Definition 5.5.1 ([29]). Let A be a K-module and consider the endofunctor
that sends A to the K-module generated by the symbols y(a) with a € A,
quotient by the submodule generated by

k*y(a) = y(ka),
v(a+b+c)+vy(a)+v(b) +v(c) (a+b)+~v(a+c)+~(b+ ),
v(ka + b) + kvy(a) + kvy(b) = ky(a + b) + v(ka) + v(b),

for all kK € K and a,b,¢c € A. This functor denoted by I' is called universal
quadratic functor.

Proposition 5.5.2 ([29]). Let I be a well-ordered set and A be a free K-module
with basis {€;}icr. Then T'(A) is a free K-module with basis

{(etier v {n(ei +€j) — v(ei) —v(ej)}i<y



130 5 A non-abelian exterior product of Leibniz algebras

Let n: m — g and u: n — g be two crossed modules of Leibniz algebras.
As we know there are induced actions of m and n on each other via the action
of g. Let m xgn = {(m,n) | n(m) = p(n)} be the pullback of n and p. It
is a Leibniz subalgebra of m @ n. Let (m,n) = {(Tn(z),7(z)) | * € m x n},
where 7: mxn — m and 7,,: m *x n — n are homomorphisms introduced in

Subsection (.3.2

Proposition 5.5.3. (m,n) is an ideal of mxgn and the quotient (mx gn)/(m, n)
is abelian.

Proof. The assertion that (m, n) is an ideal of m x yn follows by straightforward
calculations. For instance, given any m € m, n € n and (m/,n’) € m x4 n we
get

3

[(7in(m % n), 7o (m = n)), (m',n)]

[
(
(
(

= (Tm(m" = n'), 7(m™ = 1')).

n7 mn)7 (m/’ nl)]
!/
(

(
[m",m], ["n,n'])
(
(

m")" m’)’ u(mn)n/)
m'I’L

)n" (m")n/)

Now take any (m,n), (m/,n’) € m x4 n, then we have
[(m,n), (m',n")] = ([m,m'], [n,n]) = (m™, "n)

/

= (m", ") = (Tm(m s n), T(m o n')),
showing that (m x4 n)/(m,n) is abelian. O

In the subsequent statements, given a K-module A, we consider the K-
module I'(A) as an abelian Leibniz algebra.

Proposition 5.5.4. There is a well-defined homomorphism of Leibniz algebras

mxgn
I‘( 9 )&m*n,

(m, n)

given by Y(y((m,n) + (m,n))) = m*n —n*m.
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Proof. 1t is easy to check that 1 preserves the defining relations of I'. Thus,
it suffices to show that (m’' + 7 (z)) * (0’ + T(z)) — (0 + m(x)) * (M’ +
Tm(z)) = m' +n’ —n’ + m/ for each € m xn. This reduces to prove that
m' = ™n— "™nxm’ +m"+n’ —n’ «m" = 0. Using the defining relations of
the non-abelian tensor product we have

/ / /
Mn—""msm +m"x=n" —n' +m"

m' x
=[m/,m]*n— "nxm—mxn™ —[m,m]=n
+m™ wn+mxnn]— "men+[n,n]xm
=[m/,m]«n —[n',n]*m —mx*[n,n]—[m,m]*n
+ [m,mlx=n+m=[n,n]+[m ,m]*+n—[n,n] «m=0.
By Proposition we know that Im ) is contained in the centre of m*n, so
1 is a homomorphism of Leibniz algebras. O

It is clear that Im1) is contained in Ker(m: m *n — m A n), where 7 is the
canonical projection. But the following sequence

mxgn
I‘( 9) ¥ men—" maAn—-:0,

(m, n)
is not exact in many cases. Nevertheless, we have the following
Proposition 5.5.5. There is an exact sequence of Leibniz algebras

mx,n _mxg,n ”
F< SRy g) Y e man—=" man—->0,

(myny — (m,n)

where Y(y((m,n) + (m,ny, (m/,n') + (m,n))) =m=n’ —n=m’.

Proof. Like in Proposition [5.5.4] the crucial part of the proof is to show that
(m + mm(x)) = (0 + (") — (n + () * (M + (") = m=n' —n=m’
for all z,2/ € mxn. Let x = my *ny and &' = m} = n, then proving that

’ m/, a7 s .
m ") +mitxn’ —nxmy !t — ™ngxm’ =0, will imply the result. Using

the defining identities of the non-abelian tensor product, we get
my, ! ny, /! mj mi /
m#* Iy + MR —nxmy T — TN Em
/ / / / / !
=[m,mi] *n] — "n] x=mi +mq x[ny,n'] +my xng

+ [n,n}] = m) — "mh el — [my,m'] #ng —my = n]¥ = 0.
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The proof is complete, since it is straightforward that in this case Imzz =
Ker . O

In the particular case of a and b being ideals of a Leibniz algebra g, Prop-
osition and Proposition [5.5.5] can be viewed as follows:

Corollary 5.5.6. There is a well-defined homomorphism of Leibniz algebras

anb b
I‘ RS
(mu) sarb

given by ¥(y(c+ [a, b])) = i1(c) *ia(c) —ia(c) *i1(c), for any c € an b and the
natural inclusions t1: anb —a, is: anb—b.

Corollary 5.5.7. There is an exact sequence of Leibniz algebras

anb anb ¥ o
I b b 0
Qmm@mmﬁ ° “ !

where ¥(c + [a,b], ¢ + [a,b6]) = i1(c) * ia(¢) —ia(c) #i1(c), for all ¢, € anb.

anb anb
In the next proposition denotes the exterior product of K-

[a,6] " Ta, 0]

modules.

Proposition 5.5.8. There is an exact sequence of Leibniz algebras

amb/\amb ¢ axb =z
[a,b]  [a,b] Im 1)

axb——>0,

where T is the canonical projection and ¢((c + [a,b]) A (¢ + [a,b])) = i1(c) *
io(c') —ia(c) #i1() + Ima, for all ¢, € am b.

Proof. To check that ¢ is well defined, it suffices to verify the following iden-
tities:
i1(c) = igla, b] —ia(c) xi1[a,b] = 0,

i1 [a] # in(e) — iafa,B] # i2(¢) = O,
forallcean b, aeaandbeb. Using (3c), (3d) and (4b) we have:
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i1(c )*ZQ[a,b] io(c) * i1[a, b]
i1(b) — i1e, b] *i2(a) — i2(c) *i1]a, b]

=11][c, b] % ia(a) — ia(c) % i1[b, a] — i1[c, b] * ia(a) — i2(c) * i1[a, b] = 0.
Using (3d), (3b) and (4b) we have:

Il
~.
no
—
o
Q
[Rn
*

i1[a, b] = is(c) — iz[a, b] = i1(c)
= iofa,c| #i1(b) + iz(a) * i1[b, c] — i2[a,b] = i1(c)
=ia(a) *i1[c, b] + i2(a) * i1[b, c] = 0.

The proof is complete, since it is straightforward that Im ¢ = Ker7. ]

Let g be a Leibniz algebra, and let 7: g x g — g ® gP be the homomor-

phism defined by i1(g) #i2(g") — (9+[g,8]) @ (9" +[g, 8]), i2(g) *i1(g') = 0, for
all g, ¢’ € g, where ® denotes the tensor product of K-modules. Then, 7 induces
*
well-defined homomorphisms 7: g x g — g A ¢g°® and 7: % — g* A g2
m
where 1 is defined as in Proposition [5.5.4]

Proposition 5.5.9. We have the following exact sequence of Leibniz algebras
ab ¢ _8*8 7
Im

where T is the canonical projection and ¢ is defined as in Proposition [5.5.8
Moreover, the following map

0——>gPnrg gAg 0.

g*g ( 7)
Im

is an isomorphism of Leibniz algebras.

——=> (g2 0)® (g™ A g*")

Proof. 1t is easy to see that 7o ¢ = 1, gen. This implies both parts of the
proposition. O

Proposition 5.5.10. Let g be a Leibniz algebra such that g?® is free as a
K-module. Then there is an exact sequence of Leibniz algebras

a ¥ (m,7) a a
0 —>I'(g*) g*g (g~ 9)®(g°° A g*?) —0.
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Proof. By the previous proposition it suffices to show that ¢ is injective. By
Propositionone sees easily that the composition 7o¢: T'(g??) — g*P®g?P
maps a basis of I'(g?") injectively into a set of linearly independent elements.
Therefore 7 o 1) is injective and v is injective. 0

5.6 Comparison of the second Lie and Leibniz ho-
mologies of a Lie algebra

In this section we return to the case when K is a field, g denotes a Lie algebra
and Hs(g) denotes the second Chevalley-Eilenberg homology of g. It is known
that there is an epimorphism ty: HLo(g) — H2(g) defined in a natural way
(see e.g. [27] ).

Proposition 5.6.1. There exists a vector subspace V' of Ker{ty: HLs(g) —
Hy(g)} such that we have an epimorphism V — I'(g?). Hence, if g is not a
perfect Lie algebra, then ty: HLy(g) — Ha(g) is not an isomorphism.

Proof. Let g 20 (resp. g o g) denote the non-abelian tensor (resp. exterior)
square of the Lie algebra g (see [15]). Then we have two epimorphisms g A g —
g9 and gAag— g Al defined in a natural way. Since ty: HLo(g) — H2(g)
can be viewed as the natural homomorphism from Ker{g A g — g} to Ker{g 2
g — g}, we have that ty(Ker{gag — gL/deg}) =0. Let V = Ker{grg — gL/Z\eg}.
Consider the following commutative diagram with exact rows:

0 1% gAg gﬁ(};%O

0 ——Ker{fgxg—gArgl ——>grg—>gArg——>0.
Lie Lie Lie Lie

From this diagram we have an epimorphism V — Ker{g B I PN g}
e e

Moreover, by [15, Proposition 17] Ker{g Bk I g} = T(g®). O

Finally, we give the following result, the proof of which can be found in [6} [§].
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Proposition 5.6.2. For a perfect Lie algebra g, we have the following exact
sequence:
0— HLy(g * 8) = HLx(g) — Ha(g) — 0.
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Chapter 6

Actor of a crossed module of
Leibniz algebras

Abstract

We extend to the category of crossed modules of Leibniz algebras the notion of
biderivation via the action of a Leibniz algebra. This results into a pair of Leib-
niz algebras which allow us to construct an object which is the actor under certain
circumstances. Additionally, we give a description of an action in the category of
crossed modules of Leibniz algebras in terms of equations. Finally, we check that,
under the aforementioned conditions, the kernel of the canonical map from a crossed
module to its actor coincides with the center and we introduce the notions of crossed

module of inner and outer biderivations.
Reference

J. M. Casas, R. Fernandez-Casado, X. Garcia-Martinez, and E. Khmaladze,
Actor of a crossed module of Leibniz algebras, preprint arXiv:1606.04871,
2016.

6.1 Introduction

In the category of groups it is possible to describe an action via an object
called the actor, which is given by the group of automorphisms. Its ana-
logue in the category of Lie algebras is the Lie algebra of derivations. Groups

139
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and Lie algebras are examples of categories of interest, introduced by Orzech
n [13]. For these categories (see [LI] for more examples), Casas, Datuashvili
and Ladra [3] gave a procedure to construct an object that, under certain cir-
cumstances, plays the role of actor. For the particular case of Leibniz algebras
(resp. associative algebras) that object is the Leibniz algebra of biderivations
(resp. the algebra of bimultipliers).

In [I2], Norrie extended the definition of actor to the 2-dimensional case
by giving a description of the corresponding object in the category of crossed
modules of groups. The analogue construction for the category of crossed
modules of Lie algebras is given in [7]. Regarding the category of crossed
modules of Leibniz algebras, it is not a category of interest, but it is equivalent
to the category of cat!-Leibniz algebras (see for example [6]), which is itself a
modified category of interest in the sense of [2]. Therefore it makes sense to
study representability of actions in such category under the context of modified
categories of interest, as it is done in [2] for crossed modules of associative
algebras.

Bearing in mind the ease of the generalization of the actor in the category
of groups and Lie algebras to crossed modules, together with the role of the
Leibniz algebra of biderivations, it makes sense to assume that the analogous
object in the category of crossed modules of Leibniz algebras will be the actor
only under certain hypotheses. In [5] the authors gave an equivalent descrip-
tion of an action of a crossed module of groups in terms of equations. A similar
description is done for an action of a crossed module of Lie algebras (see [4]).
In order to extend the notion of actor to crossed modules of Leibniz algebras,
we generalize the concept of biderivation to the 2-dimensional case, describe
an action in that category in terms of equations and give sufficient conditions
for the described object to be the actor.

The article is organized as follows: In Section we recall some basic
definitions on actions and crossed modules of Leibniz algebras. In Section [6.3]
we construct an object that extends the Leibniz algebra of biderivations to the
category of crossed modules of Leibniz algebras (Theorem and give a
description of an action in such category in terms of equations. In Section
we find sufficient conditions for the previous object to be the actor of a given
crossed module of Leibniz algebras (Theorem [6.4.3). Finally, in Section 6.5 we
prove that the kernel of the canonical homomorphism from a crossed module
of Leibniz algebras to its actor coincides with the center of the given crossed
module. Additionally, we introduce the notions of crossed module of inner and
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outer biderivations and show that, given a short exact sequence in the category
of crossed modules of Leibniz algebras, it can be extended to a commutative
diagram including the actor and the inner and outer biderivations.

6.2 Preliminaries

In this section we recall some needed basic definitions. Throughout the paper
we fix a commutative ring with unit k. All algebras are considerer over k.

Definition 6.2.1 ([9]). A Leibniz algebra p is a k-module together with a
bilinear operation [, ]: p x p — p, called the Leibniz bracket, which satisfies
the Leibniz identity:

[[p1, p2]s p3] = [p1, [p2, p3]] + [[p1, p3], p2],

for all p1, p2, p3 € p.
A homomorphism of Leibniz algebras is a k-linear map that preserves the
bracket.

We denote by Ann(p) (resp. [p,p]) the annihilator (resp. commutator) of
p, that is the subspace of p generated by

{prep | [p1,p2] = [p2,p1] = 0, for all py € p}
(resp. {[p1,p2] | for all pi,ps € p})
It is obvious that both Ann(p) and [p,p] are ideals of p.

Definition 6.2.2 ([I0]). Let p and m be two Leibniz algebras. An action of
p on m consists of a pair of bilinear maps, p x m — m, (p,m) — [p, m] and
m x p —m, (m,p) — [m,p], such that

[p, [m, m']] = [[p, m],m'] = [[p,m'],m],
[m, [p,m']] = [[m, p],m'] = [[m,m'],p],
[m, [m’, p]] = [[m,m'], p] — [[m,p],m'],
[m, [p, 1] = [[m,p), p'] = [[m,p'], pl,
[p, [m, p']] = [[p, m], p'] = [[p, '], m],
[p, [P, m]] = [[p, '], m] — [[p,m], '],

for all m,m’ € m and p,p’ € p.
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Given an action of a Leibniz algebra p on m, we can consider the semidirect
product Leibniz algebra m x p, which consists of the k-module m @ p together
with the Leibniz bracket given by

[(m, ), (m",p)] = ([m, m'] + [p,m] + [m, '], [p,P']),
for all (m,p), (m’,p') e m®p.

Definition 6.2.3 ([10]). A crossed module of Leibniz algebras (or Leibniz
crossed module, for short) (m,p,n) is a homomorphism of Leibniz algebras
n: m — p together with an action of p on m such that

n(lp,m]) = [p,n(m)] and n([m,p]) = [n(m),p], (XLb1)
[n(m)am/] = [m7m/] = [man(m/)]v (XLbQ)

for all m,m’ e m, p € p.

A homomorphism of Leibniz crossed modules (p,1) from (m,p,n) to
(n,q,u) is a pair of Leibniz homomorphisms, ¢: m — n and ¥: p — q,
such that they commute with n and p and they respect the actions, that
is ¢([p,m]) = [¥(p),p(m)] and ¢([m,p]) = [¢(m), ¥ (p)] for all m € m, p € p.

Identity will be called equivariance and Peiffer identity.
We will denote by XLb the category of Leibniz crossed modules and homo-
morphisms of Leibniz crossed modules.

Since our aim is to construct a 2-dimensional generalization of the actor
in the category of Leibniz algebras, let us first recall the following definitions.

Definition 6.2.4 ([9]). Let m be a Leibniz algebra. A biderivation of m is a
pair (d, D) of k-linear maps d, D: m — m such that

d([m,m']) = [d(m), m'] + [m,d(m')], (6.2.1)
D([m,m']) = [D(m),m'] — [D(m),m], (6.2.2)
[m,d(m')] = [m, D(m)], (6.2.3)

for all m, m’ € m.

We will denote by Bider(m) the set of all biderivations of m. It is a Leibniz
algebra with the obvious k-module structure and the Leibniz bracket given by

[(d1, D1), (d2, D2)] = (did2 — dady, D1dg — daDy).
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It is not difficult to check that, given an element m € m, the pair
(ad(m), Ad(m)), with ad(m)(m’) = —[m’,m] and Ad(m)(m') = [m,m/] for all
m’ € m, is a biderivation. The pair (ad(m), Ad(m)) is called inner biderivation
of m.

6.3 The main construction

In this section we extend to crossed modules the Leibniz algebra of bideriva-
tions. First we need to translate the notion of a biderivation of a Leibniz
algebra into a biderivation between two Leibniz algebras via the action.

Definition 6.3.1. Given an action of Leibniz algebras of q on n, the set of
biderivations from q to n, denoted by Bider(q, n), consists of all the pairs (d, D)
of k-linear maps, d, D: q¢ — n, such that

d([¢,q']) = [d(q), '] + [g,d(q")], (6.3.1)
D(lg,4']) = [D(q),q'] = [D(d'), ql, (6.3.2)
[q,d(d")] = [a, D(d)], (6.3.3)

for all ¢q,¢' € q.

Given n € n, the pair of k-linear maps (ad(n), Ad(n)), where ad(n)(q) =
—[g,n] and Ad(n)(q) = [n,q] for all ¢ € q, is clearly a biderivation from q to n.
Observe that Bider(q, q), with the action of q on itself defined by its Leibniz
bracket, is exactly Bider(q).

Let us assume for the rest of the article that (n,q, u) is a Leibniz crossed
module. One can easily check the following result.

Lemma 6.3.2. Let (d,D) € Bider(q,n). Then (du,Dp) € Bider(n) and
(ud, uD) € Bider(q).

We also have the following result.

Lemma 6.3.3. Let (di, D1), (d2, D2) € Bider(q,n). Then

[D1pda(q),q'] = [D1Da(q),¢'],
[¢, D1pud2(q')] = [, D1puD2(q")],

forall q,q € q.
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Proof. Let q,q' € q and (d1, D1), (d2, D2) € Bider(q,n). According to the

identity (6.3.3) for (d,D2), [¢',d2(q)] = [¢', D2(q)], so Diu([d',d2(q)]) =
Dyu([¢d', D2(q)]). Due to (6.3.2) and the equivariance of (q,n,u), one can
easily derive that

[D1(q'), nd2(q)] — [D1pda(q),q'] = [D1(d'), pDa(q)] — [D1p2D2(q), ¢']-

By the Peiffer identity and (6.3.3) for (da,D2), [Di(¢'),pda2(q)] =
[D1(q'), nDa(q)]. Therefore [Dyuda(q),q'] = [D1pD2(q), ¢']-
The other identity can be proved similarly by using (6.3.1)) and (6.3.3)). [

Bider(q, n) has an obvious k-module structure. Regarding its Leibniz struc-
ture, it is described in the next proposition.

Proposition 6.3.4. Bider(q,n) is a Leibniz algebra with the bracket given by
[(d1, D1), (d2, D2)] = (dipds — dapdy, Dijuda — dapuDr) (6.3.4)
fO’I’ all (dl, Dl), (dg, Dg) € Bider(q, n).
Proof. Tt follows directly from Lemma [6.3.3 O
Now we state the following definition.

Definition 6.3.5. The set of biderivations of the Leibniz crossed module
(n,q, 1), denoted by Bider(n, q, 1), consists of all quadruples ((o1, 61), (02, 62))
such that

(01,01) € Bider(n) and (o2,62) € Bider(q), (6.3.5)
woy = oo and  pb = O, (6.3.6)
o1(lg;n]) = [o2(9),;n] + [g,01(n)], (6.3.7)
o1([n.q]) = [o1(n), 4] + [n, 02(q)], (6.3.8)
01([g;n]) = [02(q). n] — [61(n), q], (6.3.9)
01([n, q]) = [61(n), q] — [02(q), n], (6.3.10)
lg,01(n)] = [g,01(n)], (6.3.11)
[n, 02(q)] = [1,02(q)], (6.3.12)

forallnen, qeq.
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Given ¢ € q, it can be readily checked that ((of,67), (c4,63)), where

Utlz(n) = —[n,ql, etlz(n) = [g.n],
o3(¢) =—ld.al,  03(d) =la.q],
is a biderivation of the crossed module (n,q, ).

The following lemma is necessary in order to prove that Bider(n,q, u) is
indeed a Leibniz algebra.

Lemma 6.3.6. Let ((01,61),(02,02)),((c1,0}),(ch,05)) € Bider(n,q, ) and
(d, D) € Bider(q,n). Then

[Dos(q),q'] = [Db2(q),q'], [Doa(q),n] = [Db2(q), nl,
l¢, Doa(q')] = g, Db2(¢')],  [n, Doa(q)] = [n, Db2(q)],
[01d(q),4'] = [61D(q),q'], [61d(q),n] = [61D(q),n],
lq,61d(q')] = [g,0:1D(d")], [n,61d(q)] = [n,01D(q)],
(015 (n),q] = [6101(n),q],  [0205(q),n] = [0205(q), 7],
[q,0101(n)] = [q,0:01(n)],  [n,0205(q)] = [n, 0205(q)],

forallnen, q,q €q.

Proof. Let us show how to prove the first identity; the rest of them can be
checked similarly. Let ¢,¢" € q, (d, D) € Bider(q,n) and ((o1,61), (02,62)) €
Bider(n, q, ). Since (o2,62) is a biderivation of q, we have that [¢,02(q)] =

[¢',02(q)]. Therefore D([¢',02(q)]) = D([¢',62(q)]). Directly from (6.3.2)), we
get that

[D(q'), 02(a)] = [Do2(q), '] = [D(q), b2(q)] — [Db2(q), ¢']-

Thus, due to , [D(q'),02(q)] = [D(q'),62(q)]. Hence, [Do2(q),q] =
[DO:2(q), q']- O

The k-module structure of Bider(n, q, i) is evident, while its Leibniz struc-
ture is described as follows.

Proposition 6.3.7. Bider(n,q, u) is a Leibniz algebra with the bracket given
by

[((017 61)7 (U% 02))7 ((U/lv 9/1>7 (0/27 9/2))] = ([(017 01)7 (017 9/1)]7 [(027‘92)7 (Uév 95)])
= ((o10] — oho1,0107 — 0161), (020h — dhoa, 020 — 0h6s)), (6.3.13)

for all ((a1,01), (02,62)), ((01,01), (03, 05)) € Bider(n, q, ).
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Proof. 1t follows directly from Lemma [6.3.6 O

Proposition 6.3.8. The k-linear map A: Bider(q,n) — Bider(n, q, 1), given
by (d, D) — ((du, D), (ud, pD)) is a homomorphism of Leibniz algebras.

Proof. A is well defined due to Lemma while checking that it is a homo-
morphism of Leibniz algebras is a matter of straightforward calculations. [

Since we aspire to make A into a Leibniz crossed module, we need to define
an action of Bider(n,q, ) on Bider(q,n).

Theorem 6.3.9. There is an action of Bider(n, q, ) on Bider(q,n) given by:

[((01,61), (02,02)),(d, D)] = (01d — dog, 0:1d — dbs), (6.3.14)
[(d,D),((01,61),(02,02))] = (dog — 01d, Doy — 01 D), (6.3.15)

for all ((01,61), (02,02)) € Bider(n,q, 1), (d, D) € Bider(q,n). Moreover, the
Leibniz homomorphism A (see Pmposition together with the above ac-
tion is a Leibniz crossed module.

Proof. Let (d,D) € Bider(q,n) and ((o1,61), (02,602)) € Bider(n, q, ). Check-
ing that both (01d — dog, 61d — dbs) and (doy — 01d, Dog — 01 D) satisfy condi-
tions and requires the combined use of the properties satisfied by
the elements in Bider(n,q, ) and (d, D), but calculations are fairly straight-
forward. As an example, we show how to prove that (o1d — dog,01d — dfs)

verifies (6.3.1]). Let ¢,¢’ € q. Then

(01d — do2)([9,4']) = 1([d(9), ¢'] + [g,d(d")]) — d([o2(q), ¢'] + g, 02(d)])

=[o1d(q),q'] + [d(q), o2(¢)] + [o2(q), d(¢")] + [g, 01d(q")]
— [doa(q), ¢'] — [02(9), d(¢")] — [d(g), o2(q")] — [g, do2(q)]

=[(o1d — do2)(q), q'] + [g, (01d — do2)(¢)].

As for condition (6.3.3]), in the case of (o1d — dog,01d — db), it follows
from (6.3.11)), the identity (6.3.3) for (d, D) and the second identity in the
first column from Lemma [6.3.6] Namely,

[q, (01d — do2)(¢')] = [q,01d(q")] — [, do2(q)] = [¢,61d(q')] — [g, Doa(q')]
= [q,01d(¢')] — g, DO2(q')] = [q,61d(q")] — g, db2(q")],
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for all ¢,¢' € q. A similar procedure allows to prove that (doo—o1d, Dog—01D)

satisfies condition (6.3.3)) as well.

Routine calculations show that (6.3.14) and (6.3.15) together with the
definition of the brackets in Bider(n, q, #) and Bider(q,n) provide an action of

Leibniz algebras.
It only remains to prove that A satisfies the equivariance and the Peiffer
identity. It is immediate to check that

A([((Ulﬂ 01)7 (027 62))7 (d7 D)]) = ((Uldu — doap, bhdp — d@g,u),
(,uald - /,LdO'Q, /Mgld - ,udﬁg)), (6.3.16)

while

[((a1,01), (02,02)), A(d, D)] = ((o1dp — dpoy, O1dp — dpby ),
(oopd — pdog, Oapud — pdfs)).  (6.3.17)

Condition (6.3.6) guarantees that (6.3.16)) = (6.3.17)). The other identity can
be checked similarly. The Peiffer identity follows immediately from (6.3.14))
and (6.3.15)) along the definition of A and the bracket in Bider(q,n). O

6.4 The actor

In [I3], Orzech introduced the notion of category of interest, which is nothing
but a category of groups with operations verifying two extra conditions. Lb
is a category of interest, although XLb is not. Nevertheless, it is equivalent
to the category of cat!-Leibniz algebras (see for example [6]), which is itself
a modified category of interest in the sense of [2]. So it makes sense to study
representability of actions in XLb under the context of modified categories of
interest, as it is done in [2] for crossed modules of associative algebras. How-
ever, since XLb is an example of semi-abelian categories, and an action is the
same as a split extension in any semi-abelian category [I, Lemma 1.3], we
choose a different, more combinatorial approach to the problem, by construct-
ing the semidirect product (split extension) of Leibniz crossed modules.

We use the term actor (as in [2, [3]) for an object which represents actions
in a semi-abelian category, the general definition of which is known from [I]
under the name split extension classifier.
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We need to remark that, given a Leibniz algebra m, Bider(m) is the actor
of m under certain conditions. In particular, the following result is proved
in [3].

Proposition 6.4.1 ([3]). Let m be a Leibniz algebra such that Ann(m) = 0 or
[m,m] = m. Then Bider(m) is the actor of m.

Bearing in mind the ease of the generalization of the actor in the cat-
egory of groups and Lie algebras to crossed modules, together with the
role of Bider(m) in regard to any Leibniz algebra m, it makes sense to
consider (Bider(q,n),Bider(n,q,u),A) as a candidate for actor in XLb, at
least under certain conditions (see Proposition . However, it would
be reckless to define an action of a Leibniz crossed module (m,p,7n) on
(n,q,1) as a homomorphism from (m,p,7n) to the Leibniz crossed module
(Bider(q, n), Bider(n, q, 1), A), since we cannot ensure that the mentioned ho-
momorphism induces a set of actions of (m,p,n) on (n,q,u) from which we
can construct the semidirect product.

In [5, Proposition 2.1] the authors give an equivalent description of an ac-
tion of a crossed module of groups in terms of equations. A similar description
can be done for an action of a crossed module of Lie algebras (see [4]). This
determines our approach to the problem. We consider a homomorphism from
a Leibniz crossed module (m, p,n) to (Bider(q, n), Bider(n, q, ), A), which will
be denoted by Act(n, q, ) from now on, and unravel all the properties satisfied
by the mentioned homomorphism, transforming them into a set of equations.
Then we check that the existence of that set of equations is equivalent to
the existence of a homomorphism of Leibniz crossed modules from (m,p,n)
to Act(n,q,u) only under certain conditions. Finally we prove that those
equations indeed describe a comprehensive set of actions by constructing the
associated semidirect product, which is an object in XLb.

Lemma 6.4.2.

(i) Let q be a Leibniz algebra and (o,6),(0’,0") € Bider(q). If Ann(q) = 0
or [4,q] = q, then
0o’ (q) = 00'(q), (6.4.1)

for all q € q.

(ii) Let (n,q,p) be a Leibniz crossed module. — Then we have that
((01,01), (02,02)) € Bider(n,q, ) and (d, D) € Bider(q,n). If Ann(n) =
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0 or [q,q] = q, then

Dos(q) = Db2(q), (6.4.2)
01d(q) = 61D(q), (6.4.3)

for all q € q.

Proof. Calculations in order to prove (i) are straightforward. Regarding (ii),
Dos(q) — Db2(q) and 01d(q) — 01 D(q) are elements in Ann(n), immediately
from the identities in the second column from Lemma [6.3.6] Therefore, if
Ann(n) = 0, it is clear that (6.4.2]) and (6.4.3)) hold.

Let us now assume that [q,q] = q. Given ¢, ¢’ € q, directly from the fact
that (o9, 62) € Bider(q) and (d, D) € Bider(q,n), we get that

D0y([q,q']) = [Db2(q),q'] — [D(d),02(q)] — [DO2(q"), q] + [D(q),02(¢)],
Doy([q,q']) = [Doa(q),d'] — [D(¢), 02(q)] + [D(q), 02(q")] — [Do2(d'), ql.

Due to (6.3.12) and the first identity in the first column from Lemma [6.3.6]
Db5([q,4q']) = Do2([q,q']). By hypothesis, every element in q can be expressed
as a linear combination of elements of the form [q, ¢’]. This fact together with
the linearity of D, o and 69, guarantees that Dy (q) = Doy(q) for all g € q.

The identity (6.4.3) can be checked similarly by making use of (6.3.3)), (6.3.9),
(6.3.10)) and the third identity in the first column from Lemma m O

Theorem 6.4.3. Let (m,p,n) and (n,q, ) in XLb. There exists a homomor-
phism of crossed modules from (m,p,n) to (Bider(q,n), Bider(n, q, u), A), if the
following conditions hold:

(i) There are actions of the Leibniz algebra p (and so m) on the Leibniz
algebras n and q. The homomorphism p is p-equivariant, that is

u([p,n]) = [p, p(n)], (LbEQ1)
w([n, p]) = [p(n), pl, (LbEQ2)
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150

and the actions of p and q on n are compatible, that is
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Additionally, the converse statement is also true if one of the following
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conditions holds:

Ann(n) = 0 = Ann(q), (CON1)
Ann(n) =0 and [q,9] =q, (CON2)
[n,n]=n and [q,q9] =q. (CON3)

Proof. Let us suppose that (i) and (ii) hold. It is possible to define a homo-
morphism of crossed modules (p,1) from (m,p,n) to Act(n,q,u) as follows.
Given m € m, ¢(m) = (dm, Di,), with

dm(q) = =&2(q;m),  Dm(q) = &1(m, q),
for all ¢ € q. On the other hand, for any p € p, ¥(p) = ((¢¥,6Y), (o}, 6%)), with

(n> = _[nvp]v 9{(”) = [pan]v
5() = —la,pl,  05(q) = [p.dl,

for all n € n, g € q. It follows directly from (LbMbal)—(LbMb5c|) that (dp,, Dy,) €
Bider(q,n) for all m € m. Besides, ¢ is clearly k-linear and given m, m’ € m,

[‘P(m)u go(m/)] = [(dm7Dm)> (dm’aDm’)] = [dmﬂdm’_dm’ﬂdmuDmudm/_dm’,qu]-

For any q € q,

A i (q) = Ay i (@) = —Ea(pud (q), m) + E2(udim(q), m")
= —[dm(q), m] + [din(q), m’]
= [&a(g, m"), m] — [&2(q,m), m]
= —&(q, [m, m']) = dpm (9),

due to and . Analogously, it can be easily checked the
identity (Dppidpy — dpsppDin)(q) = Dy () by making use of (LbM2a)),
(LbM2b|) and (LbM4b|). Hence, ¢ is a homomorphism of Leibniz algebras.
As for 1, it is necessary to prove that ((of,67), (o}, 6%)) satisfies all the
axioms from Definition for any p € p. The fact that (o}, 07) (respectively
(08,6%)) is a biderivation of n (respectively q) follows directly from the actions
of p on n and q. The identities u#) = 5u and pol = obp are immediate

consequences of (LbEQ1]) and (LbEQ?2)) respectively.
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Observe that the combinations of the identities (LbCOM1|) and (LbCOM4))
and the identities (LbCOM5|) and (LbCOMG6) yield the equalities

—[n,[g,pll = [n,[p,q]]  and — g, [n,pll = [g, [p,n]].

These together with (LbCOM2)—(LbCOMS5|) allow us to prove that

((oF,67), (c%,65)) does satisfy conditions (6.3.7)~(6.3.12)) from Definition[6.3.5]
Therefore, 1 is well defined, while it is obviously k-linear. Moreover, due

to (6.3.13]) we know that
[¢(p),¢(19,)] = ((Ufffyf — 0] 017911301 -0 Hp) (0205 — 03 027912702 — 03 Hp))

and by definition

U(lpop'D) = (o7, 0, (o, 0 PT)).

One can easily check that the corresponding components are equal by making
use of the actions of p on n and q. Hence, ¢ is a homomorphism of Leibniz
algebras.
Recall that
Ap(m) = ((dmp, Dinpt), (tdm, 1Di)),
dn(m) = (07,61, (o3, 65"™)),

for any m € m, but

dmpi(n) = —E2(p(n),m) = ~[n,m] = ~[n,n(m)] = 07" (n),
Dypr(n) = & (m, p(n)) = [m,n] = [n(m),n] = 67" (n),
pdl () = ﬂ@@,> ~[g,m] = ~[g.n(m)] = 05" (q),
1D(q) = pér(m,q) = [m,q] = [n(m),q] = 65" (q),

for all n € n, ¢ € q, due to (LbM1al)), (LbM1b)), (LbM2a]), (LbM2b)). Therefore,

Ap = 1.
It only remains to check the behaviour of (¢, ) regarding the action of p
on m. Let m € m and p € p. Due to (6.3.14)) and ([6.3.15]),

[¥(p), p(m)] = (Uzl)dm dm0279pd dm9§)7
[o(m), ¥ (p)] = (dmoy — 0{dm, Dol — 07 Dyy).
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On the other hand, by definition, we know that

([, m]) = (dip,m)> Dipm));
(p([m,p]) = (d[m7p]>D[m7p])'

Directly from (LbM3al), (LbM3b)), (LbM3c) and (LbM3d]) one can easily con-

firm that the required identities between components hold. Hence, we can
finally ensure that (¢,) is a homomorphism of Leibniz crossed modules.
Now let us show that it is necessary that at least one of the conditions

(CON1)—(CON3) holds in order to prove the converse statement. Let us sup-
pose that there is a homomorphism of crossed modules

m ! p (6.4.4)

‘| v

Bider(q,n) —— Bider(n, q, 1)

Given m € m and p € p, let us denote @(m) by (dm,Dm) and ¥ (p)
by ((al,Hp ), (65, 6%)), which satisfy conditions (6.3.1)-(6.3.3) from Defini-
tion and conditions (6.3.5)—(6.3.12]) from Definition respectively.

Also, due to the definition of A (see Proposition , the commutativity
of (6.4.4)) can be expressed by the identity

((dmfts Dinft), (picy, pD)) = (01,67, (03 037)), (6.4.5)

for all m € m. It is possible to define four bilinear maps, all of them denoted
by [—,—], from p xnton,nx pton, pxqtoqandqxptoq, given by

[ ’n] = 9?(”)7 [n,p] = _U:f(n)v
[p,a] = 05(a),  [a:p] = —03(a),

for all n e n, p e p, g € q. These maps define actions of p on n and q. The first

three identities for the action on n (respectively q) follow easily from the fact

that (of, 6%) (respectively (oh,6%)) is a biderivation of n (respectively q).
Since 1 is a Leibniz homomorphism, we get that

(P71 PPy (o PP ol P Ty) = (Pt — o' 0P, 0ot — oF o),

(05072’ — 03 0279502 — 03 ep))
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The identities between the first and the second (respectively the third and the
fourth) components in those quadruples allow us to confirm the fourth and
fifth identities for the action of p on n (respectively q).

As for the last condition for both actions, it is fairly straightforward to
check that

[[p, 2], n] = [[p, n],p'] = 6107 (n),

[[p, ], d] — [[p,al. '] = 6555 (q),

while

[p, [, n]] = 676Y (n),
[0, [, a]] = 6565 (a),

for all n € n, p,p’ € p, ¢ € q. However, if at least one of the conditions
(CONT)-(CON3) holds, due to Lemma (i), 6°6¥ (n) = 676" (n) and
0bot (q) = 9§0§l(q). Therefore, we can ensure that there are Leibniz actions
of p on both n and g, which induce actions of m on n and q via 7.

The reader might have noticed that a fourth possible condition on (n, q, )
could have been considered in order to guarantee the existence of the actions
of p on n and q from the existence of the homomorphism of Leibniz crossed
modules (p,%). In fact, if [n,n] = n and Ann(q) = 0, the problem with
the last condition for the actions could have been solved in the same way.
Nevertheless, this fourth condition does not guarantee that (ii) holds, as we
will prove immediately below.

Regarding and , they follow directly from (ob-
serve that, by hypothesis, ((o},6%), (o8,65)) is a biderivation of (n,q,u) for
any p € p). Similarly, (LbCOMI|)—(LbCOMG) follow almost immediately from
(6.3.7)—(6.3-12)). Hence, (i) holds.

Concerning (ii), we can define & (m,q) = Dy,(q) and & (g, m) = —din(q)
for any m € m, ¢ € q. In this way, & and & are clearly bilinear. ,
(LbM1b)), (LbM2al) and (LbM2b]) follow immediately from the identity
and the fact that the actions of m on n and q are induced by the actions of p
via 7.

Identities (CLbMbal), (LbM5b) and are a direct consequence

of (6.3.1)—(6.3.3) (recall that, by hypothesis, (dy,, Dy,) is a biderivation from
q to n for any m € m).
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Since ¢ is a Leibniz homomorphism, we have that
(d[m,m’]7 D[m,m’]) = (dmﬂdm’ — dm’ﬂdm; Dm,udm/ - dm/,qu).

This identity, together with (LbM?2a)) and (LbM2b)), allows to easily prove
that (LbM4af) and (LbM4b|) hold.

Note that, since (p,1) is a homomorphism of Leibniz crossed modules,

e([p,m]) = [¥(p),p(m)] and @([m,p]) = [¢(m),¥(p)] for all m € m, p €
p. Due to the definition of the action of Bider(n,q, 1) on Bider(q,n) (see

Theorem [6.3.9)), we can write
(dip,m]» Dppm]) = (07 dm — dmoyy, 07 dr, — dmb5),

(dpmp)s Dimp)) = (dyob — oVdy, Dioh — o' Dy,).

Identities (LbM3al), (LbM3b)), (LbM3d)) and (LbM3d]) follow immediately from
the previous identities.

Regarding (LbM6al) and (LbMG6b|), directly from the definition of &1, &

and the actions of p on n and g, we have that

&1(m, [p,q]) = Dmb5(q),  [p,&1(m,q)] = 67 Din(q),
—&1(m, [q,p]) = Dmob(q),  —[p, &g, m)] = 07dn(q),

for all m € m, p € p, ¢ € q. Nevertheless, if at least one of the condi-
tions (CONI)-(CON3) holds, due to Lemma [6.4.2] (ii), Dm65(q) = Dmob(q)
and 07Dy, (q) = 6Vd,,(q). Hence, (ii) holds. O

Remark 6.4.4. A closer look at the proof of the previous theorem shows that

neither conditions (LbM6al) and (LbM6b)), nor the identities [p,[p’,n]] =
[[pap/]vn] - [[p7 n]ap,] and [p7 [p/aQ]] = [[pap/]aQ] - [[ aq])p/] (Wthh corre-
spond to the sixth axiom satisfied by the actions of p on n and q respectively)

are necessary in order to prove the existence of a homomorphism of crossed
modules (¢,) from (m, p,7n) to Act(n, q, 1), under the hypothesis that (i) and
(ii) hold. Actually, if we remove those conditions from (i) and (ii), the con-
verse statement would be true for any Leibniz crossed module (n,q, i), even
if it does not satisfy any of the conditions (CON1))-(CON3|)). The problem is
that (LbM6a)) and ([LbM6b]), together with the sixth identity satisfied by the
actions of p on n and q are essential in order to prove that (i) and (ii) as in
Theorem describe a set of actions of (m,p,n) on (n,q, 1), as we will show
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immediately below. This agrees with the idea of Act(n,q, ) not being “good
enough” to be the actor of (n,q, 1) in general, just as Bider(m) is not always
the actor of a Leibniz algebra m.

Example 6.4.5. Let (m,p,n) € XLb, then there is a homomorphism

(ps): (myp,m) — Act(m,p,n), with o(m) = (dm,Dn) and ¢(p) =
((‘7117’ 0117)7 (Ug, 05)), where

dm(p) = —[p,m],  Dwn(p) = [m,p],

and

O-zlg(m) = —[m,p], ello(m) = [p’ m]a
ay(p') = =[],  65(p") = [p.P],

for all m € m, p,p’ € p. Calculations in order to prove that (¢,) is indeed
a homomorphism of Leibniz crossed modules are fairly straightforward. Of
course, this homomorphism does not necessarily define a set of actions from
which it is possible to construct the semidirect product. Theorem [6.4.3 along
with the result immediately bellow, shows that if (m,p,7) satisfies at least one
of the conditions (CONI))-(CON3)), then the previous homomorphism does
define an appropriate set of actions of (m,p,n) on itself.

Let (m,p,n) and (n,q, ) be Leibniz crossed modules such that (i) and (ii)
from Theorem hold. Therefore, there are Leibniz actions of m on n and
of p on ¢, so it makes sense to consider the semidirect products of Leibniz
algebras n x m and q x p. Furthermore, we have the following result.

Theorem 6.4.6. There is an action of the Leibniz algebra q xp on the Leibniz
algebra n x m, given by

[(¢,p), (n,m)] = ([g,n] + [p,n] + §2(q,m), [p, m]), (6.4.6)
[(n,m), (q,p)] = ([n,q] + [n,p] + &1(m, q), [m, p]), (6.4.7)

for all (q,p) € qx p, (n,m) € n xm, with & and & as in Theorem [6.4.3
Moreover, the Leibniz homomorphism (p,m): nxm — q x p, given by

(1, m)(n,m) = (p(n),n(m)),

for all (n,m) € n x m, together with the previous action, is a Leibniz crossed
module.
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Proof. Identities (6.4.6)) and (6.4.7)) follow easily from the conditions satisfied
by (m,p,n) and (n,q, ) (see Theorem . Nevertheless, as an example, we
show how to prove the third one. Calculations for the rest of the identities are
similar. Let (n,m), (n’,m’) e n x m and (q,p) € q x p. By routine calculations
we get that

[[(n,m), (g, p)], (n,m")] = ([[n, q], '] +[[n, pl, 2] +[n, g], m] +[€1 (m, q), 7]
—_— ~- ~ ~ ~
(1) (27) (3") (4”)
i, +6 (. q), ] +1Tn, pl, ') [T, o], ).

AN

~~ v~

(5”) (6") () (8)

Let us show that (i) = (i) — (") for i = 1,...,8. It is immediate for i = 1,2,8
due to the action of q on n and the actions of p on n and m. For ¢ = 5, the
identity follows from the fact that the action of m on n is defined via 7 together
with the equivariance of 1. Namely,

[m, [n',p]] = [n(m), [7, p]] = [[n(m), '], p] — [[n(m), p], 7]
= [[m,n/],p] - [U([mvp])a”’] = [[m,n/],p] - [[m,p],n/].

The procedure is similar for ¢ = 7. For i = 3, it is necessary to make use of
the Peiffer identity of p, (LbM1b]), the definition of the action of m on n and

q via n and :
[nagl(mlaq)] = [na/ﬁfl(m,»Q)] = [’I’L, [mlaq]] = [na [U(m/)aQ]]
= [[n,n(m)], q] = [[n, ql, n(m")] = [[n,m'], 4] — [[n, q], m'].

The conditions required in order to prove the identity for ¢ = 4 are the same

used for ¢ = 3 except (LbCOM1|), which is replaced by (LbCOM?2]).



158 6 Actor of a crossed module of Leibniz algebras

Finally, for i = 6, due to (LbM4b|) and the definition of the action of m on
n via 1, we know that

&1 ([m7 ml]v (]) = [51 (’ITL, Q)a m/]_[ma &2 (Q> m,)] = [51 (ma Q)v m/]_[n(m)a &2 (Q7 ml)]7
but applying , we get

51([m7 m/]7 Q) = [51 (m7 Q), m/]+[n(m)7 &1 (mlv Q)] = [51 (m, Q)7 m/]+[m7 &1 (mla Q)L

so (6) = (6') — (6”) and the third identity holds. Note that
and are necessary in order to check the fourth and fifth identities
respectively.

Checking that (u,n) is indeed a Leibniz homomorphism follows directly
from the definition of the action of m on n via 1 together with the condi-

tions (LbEQI) and (LbEQZ2). Regarding the equivariance of (u,7n), given

(n,m)enxmand (¢,p) €q xp,

(11, m)([(g,p), (n, m)]) = + &2(g,m), [p,m])

+ ué2(g, m), n([p, m]))
+ [g,m], [p,n(m)])
+[a,

n(m)], [p,n(m)])

due to the equivariance of p and 7, (LbEQ1]), (LbM1lal) and the definition of
the action of m on g via 1. Similarly, but using (LbEQZ2) and (LbM1b]) in-
stead of (LbEQI|) and (LbM1al), it can be proved that (u,n)([(n,m), (¢,p)]) =
[(1(n), n(m)), (¢, p)]-

The Peiffer identity of (u,n) follows easily from the homonymous prop-
erty of p and 7, the definition of the action of m on n via 1 and the condi-

tions (LbM2af) and (LbM2b)). O

Definition 6.4.7. The Leibniz crossed module (n x m,q x p, (i, n)) is called
the semidirect product of the Leibniz crossed modules (n, q, ) and (m,p,n).

Note that the semidirect product determines an obvious split extension of

(m,p,n) by (n,q,u)

(07010) — (n,q,,u) B (l‘l Am,q X pa (/%77)) <— (mvpan) — (07070)
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Conversely, any split extension of (m,p,n) by (n,q, ) is isomorphic to their
semidirect product, where the action of (m,p,n) on (n,q, u) is induced by the
splitting homomorphism.

Remark 6.4.8. If (m, p,n) and (n, q, u) are Leibniz crossed modules and at least
one of the following conditions holds,

1. Ann(n) = 0 = Ann(q),
2. Ann(n) = 0 and [q,q] = q,
3. [myn] =nand [q,q] = q,

an action of the crossed module (m,p,n) on (n,q,x) can be also defined as a
homomorphism of Leibniz crossed modules from (m,p,7n) to Act(n,q,x). In
other words, under one of those conditions, Act(n, q, i) is the actor of (n,q, )
and it can be denoted simply by Act(n,q, u).

Example 6.4.9.

(i) Let n be an ideal of a Leibniz algebra q and consider the crossed module
(n,q,¢), where ¢ is the inclusion. It is easy to check that Act(n,q,:) = (X,Y, ),
where X is a Leibniz algebra isomorphic to {(d, D) € Bider(q)|d(q), D(q) €
nforallg € g} and Y is a Leibniz algebra isomorphic to {(d,D) €
Bider(q) | (d}y, D)) € Bider(n)}.

(ii) Given a Leibniz algebra ¢, it can be regarded as a Leibniz crossed mod-
ule in two obvious ways, (0,q,0) and (q,q,idq). As a particular case of the
previous example, one can easily check that Act(0,q,0) = (0, Bider(q),0) and
Act(q, q,idy) = (Bider(q), Bider(q), id).

(iii) Every Lie crossed module (n,q, i) can be regarded as a Leibniz crossed
module (see for instance [6, Remark 3.9]). Note that in this situation, both
the multiplication and the action are antisymmetric. The actor of (n,q, u) is
(Der(qg,n), Der(n,q, i), A), where Der(q, n) is the Lie algebra of all derivations
from q to n and Der(n,q, 1) is the Lie algebra of derivations of the crossed
module (n,q,u) (see [7] for the details). Given (d, D) € Bider(q,n), both d
and D are elements in Der(q,n). Additionally, if we assume that at least one
of the conditions from the previous lemma holds, then either Ann(n) = 0
or [,9] = g. In this situation, one can easily derive from that
Bider(g,n) = {(d,d) | d € Der(q,n)}. Besides, the bracket in Bider(qg,n) be-
comes antisymmetric and, as a Lie algebra, it is isomorphic to Der(q, n). Sim-
ilarly, Bider(n, g, u1) is a Lie algebra isomorphic to Der(n, g, 1) and Act(n,q, )
is a Lie crossed module isomorphic to Act(n,q, u).
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6.5 Center of a Leibniz crossed module

Let us assume in this section that (n,q, ) is a Leibniz crossed module that
satisfies at least one of the conditions (CONI)-(CON3|). Denote by Z(q) the
center of the Leibniz algebra g, which in this case coincides with its annihilator
(note that the center and the annihilator are not the same object in general).
Consider the canonical homomorphism (¢, %) from (n,q, 1) to Act(n,q, u), as
in Example It is easy to check that

Ker(p) =n% and Ker(¢)) = stq(n) n Z(q),

where n? = {n € n|[g,n] = [n,q] = 0, forall ¢ € q} and sty(n) = {q €
q|[g,n] = [n,q] = 0, for all n € n}. Therefore, the kernel of (¢, 1)) is the Leib-
niz crossed module (n%,stq(n) N Z(q), 1). Thus, the kernel of (¢,) coincides
with the center of the crossed module (n,q, 1), as defined in the preliminary
version of [I4, Definition 27] for crossed modules in modified categories of in-
terest. This definition of center agrees with the categorical notion of center by
Huq [8] and confirms that our construction of the actor for a Leibniz crossed
module is consistent.

Example 6.5.1. Consider the crossed module (n, q,¢), where n is an ideal of g
and ¢ is the inclusion. Then, its center is given by the Leibniz crossed module
(n " Z(q),7Z(q),¢). In particular, the center of (0,q,0) is (0,Z(q),0) and the
center of (q,q,idq) is (Z(q),Z(q),id).

By analogy to the definitions given for crossed modules of Lie algebras
(see [7]), we can define the crossed module of inner biderivations of (n,q, ),
denoted by InnBider(n,q, ), as Im(p, ), which is obviously an ideal. The
crossed module of outer biderivations, denoted by OutBider(n,q, u), is the
quotient of Act(n, q, ) by InnBider(n, q, p).

Let

(07 07 0) — (nv q, ,LL) — (n,7 q/7 ,U’/) — (n”7 qllv M/,) — (07 07 0)

be a short exact sequence of crossed modules of Leibniz algebras. Then,
there exists a homomorphism of Leibniz crossed modules (a, 3): (0, q’, p) —
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Act(n, q, 1) so that the following diagram is commutative:

(07 07 O) — (n7 q, N) - (n/7 qla N/) — (n”7 q”7 /’L”) — (07 07 O)

e

(0,0,0) — InnBider(n, q, u) —> Act(n, q, u) —> OutBider(n, q, x) — (0,0, 0)

where (o, 3) is defined as a(n') = (d,y, D,y) and 3(¢') = ((U?/,Q({), (03/,93/)),
with
dn’(Q) = _[Qa n/]’ Dn’(Q) = [n,aQ]a

and
ol (n) = ~[n,ql, 67 (n) =[d\n],
0§ () = ~[a.d),  05(a)=1[d.dl,

foralln’ en', ¢ eq,nen, qgeq.

Acknowledgments

The authors were supported by Ministerio de Economia y Competitividad
(Spain), grant MTM2013-43687-P (European FEDER support included). The
third author was also supported by Xunta de Galicia, grant GRC2013-045
(European FEDER support included) and by an FPU scholarship, Ministerio
de Educacién, Cultura y Deporte (Spain).

Bibliography

[1] F. Borceux, G. Janelidze, and G. M. Kelly, On the representability of
actions in a semi-abelian category, Theory Appl. Categ. 14 (2005), 244—
286.

[2] Y. Boyaci, J. M. Casas, T. Datuashvili, and E. O. Uslu, Actions in mod-
ified categories of interest with application to crossed modules, Theory
Appl. Categ. 30 (2015), 882-908.

[3] J. M. Casas, T. Datuashvili, and M. Ladra, Universal strict general actors
and actors in categories of interest, Appl. Categ. Structures 18 (2010),
no. 1, 85-114.



162

6 Actor of a crossed module of Leibniz algebras

[4]

J. M. Casas, R. Fernandez-Casado, E. Khmaladze, and M. Ladra, Uni-
versal enveloping crossed module of a Lie crossed module, Homology Ho-
motopy Appl. 16 (2014), no. 2, 143-158.

J. M. Casas, N. Inassaridze, E. Khmaladze, and M. Ladra, Adjunction be-
tween crossed modules of groups and algebras, J. Homotopy Relat. Struct.
9 (2014), no. 1, 223-237.

J. M. Casas, E. Khmaladze, and M. Ladra, Low-dimensional non-abelian
Leibniz cohomology, Forum Math. 25 (2013), 443-469.

J. M. Casas and M. Ladra, The actor of a crossed module in Lie algebras,
Comm. Algebra 26 (1998), no. 7, 2065-2089.

S. A. Huq, Commutator, nilpotency, and solvability in categories, Quart.
J. Math. Oxford Ser. (2) 19 (1968), 363-389.

J.-L. Loday, Une version non commutative des algébres de Lie: les al-
gébres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3-4, 269-293.

J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz
algebras and (co)homology, Math. Ann. 296 (1993), no. 1, 139-158.

A. Montoli, Action accessibility for categories of interest, Theory Appl.
Categ. 23 (2010), no. 1, 7-21.

K. Norrie, Actions and automorphisms of crossed modules, Bull. Soc.
Math. France 118 (1990), no. 2, 129-146.

G. Orzech, Obstruction theory in algebraic categories. I, II, J. Pure Appl.
Algebra 2 (1972), 287-314; ibid. 2 (1972), 315-340.

E. O. Uslu, S. Cetin, and A. F. Arslan, On crossed modules in modified
categories of interest, Math. Commun. 22 (2017), no. 1, 103-119.



Chapter 7

A natural extension of the
universal enveloping algebra
functor to crossed modules of
Leibniz algebras

Abstract

The universal enveloping algebra functor between Leibniz and associative algebras
defined by Loday and Pirashvili is extended to crossed modules. We prove that
the universal enveloping crossed module of algebras of a crossed module of Leibniz
algebras is its natural generalization. Then we construct an isomorphism between
the category of representations of a Leibniz crossed module and the category of left
modules over its universal enveloping crossed module of algebras. Our approach is
particularly interesting since the actor in the category of Leibniz crossed modules
does not exist in general, so the technique used in the proof for the Lie case cannot
be applied. Finally we move on to the framework of the Loday-Pirashvili category
LM in order to comprehend this universal enveloping crossed module in terms of the
Lie crossed modules case.
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R. Fernindez-Casado, X. Garcia-Martinez, and M. Ladra, A natural exten-
ston of the universal enveloping algebra functor to crossed modules of Leibniz
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ing crossed module of Leibniz crossed modules and representations, Journal of
Physics: Conference Series 697 (2016), no. 1, 012007.

7.1 Introduction

Leibniz algebras, which are a non-antisymmetric generalization of Lie alge-
bras, were introduced in 1965 by Bloh [3], who called them D-algebras and
referred to the well-known Leibniz identity as differential identity. In 1993
Loday [19] made them popular and studied their (co)homology. From that
moment, many authors have studied this structure, obtaining very relevant al-
gebraic results [21} 22] and applications to Geometry [18, 23] and Physics [12].

Crossed modules of groups were described for the first time by Whitehead
in the late 1940s [3I] as an algebraic model for path-connected CW-spaces
whose homotopy groups are trivial in dimensions greater than 2. From that
moment, crossed modules of different algebraic objects, not only groups, have
been considered, either as tools or as algebraic structures in their own right.
For instance, in [2I] crossed modules of Leibniz algebras were defined in order
to study cohomology.

Observe that in Ellis’s PhD thesis [I1] it is proved that, given a category
of groups with operations C such as the categories of associative and Leibniz
algebras, crossed modules, cat!-objects, internal categories and simplicial ob-
jects in C whose Moore complexes are of length 1 are equivalent structures.
Note that Ellis’s definition of category of groups with operations is more re-
strictive than the general notion of category of groups with multiple operators
introduced by Higgins [14].

Internal categories can be described in terms of what Baez calls strict 2-
dimensional objects (see [2] for groups and [I] for Lie algebras). By analogy to
Baez’s terminology, crossed modules of associative algebras (respectively Leib-
niz algebras) can be viewed as strict associative 2-algebras [I7] (respectively
strict Leibniz 2-algebras [13], 29]).

In the case of Lie algebras, the universal enveloping algebra plays two im-
portant roles: the category of representations of a Lie algebra is isomorphic
to the category of left modules over its universal enveloping algebra and the
universal enveloping algebra functor is right adjoint to the Liezation functor.
For Leibniz algebras, these roles are played by two different functors: Loday
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and Pirashvili [2I] proved that, given a Leibniz algebra p, the category of left
UL(p)-modules is isomorphic to the category of p-representations, where UL(p)
is the universal enveloping associative algebra of p. On the other hand, if asso-
ciative algebras are replaced by dialgebras, there exist a universal enveloping
dialgebra functor [20], which is right adjoint to the functor that assigns to
every dialgebra its corresponding Leibniz algebra.

Another very interesting point of view on the construction of UL(p) is
explored in [22]. They introduce the tensor category of linear maps LM,
also known as the Loday-Pirashvili category. It is possible to define Lie and
associative objects in that category and to construct the universal enveloping
algebra. Since a Leibniz algebra can be considered as a Lie object in LM, it
is remarkable that UL(p) can be obtained via the universal enveloping algebra
of the aforementioned Lie object in LM. This approach is especially useful
for studying the universal enveloping algebra of a Leibniz algebra in terms of
Lie algebras.

As Norrie states in [26], it is surprising the ease of the generalization to
crossed modules of many properties satisfied by the objects in the base cate-
gory. In [g], the universal enveloping dialgebra functor is extended to crossed
modules. The aim of this article is to extend to crossed modules the functor
UL, to prove that the aforementioned isomorphism between representations of
a Leibniz algebra and left modules over its universal enveloping algebra also
exists, and to study the 2-dimensional version of UL in terms of Lie objects in
LM.

Observe that the analogous isomorphism between representations and left
modules in the case of Lie crossed modules can be easily proved via the actor,
but this method cannot be applied in our case, since the actor of a Leibniz
crossed module does not necessarily exist [13] (see [6] for the 1-dimensional
case). This makes our approach especially interesting.

In Section [7.2] we recall some basic definitions and properties, such as
the concept of crossed module of associative and Leibniz algebras, along
with the notions of the corresponding cat'-objects. In Section we give
proper definitions of left modules over a crossed module of associative algebras
and representations of a Leibniz crossed module. In Section [7.4] we describe
the generalization to crossed modules of the functor UL: Lb — Alg, that is
XUL: XLb — XAlg, which assigns to every Leibniz crossed module its corre-
sponding universal enveloping crossed module of algebras. Additionally, we
prove that XUL is a natural generalization of UL, in the sense that it commutes



166 7 On crossed modules of Leibniz algebras

(or commutes up to isomorphism) with the two reasonable ways of regard-
ing associative and Leibniz algebras as crossed modules. In Section we
construct an isomorphism between the categories of representations of a Leib-
niz crossed module and the left modules over its universal enveloping crossed
module of algebras. Finally, in Section we introduce Lie and associative
crossed modules in the Loday-Pirashvili category and we prove that the fac-
torization of the crossed module XUL(p) via Lie crossed modules in LM also
holds in the 2-dimensional case.

Notations and conventions

Throughout the paper, we fix a commutative ring K with unit. All algebras are
considered over K. The categories of Lie, Leibniz and (non-unital) associative
algebras will be denoted by Lie, Lb and Alg, respectively.

7.2 Preliminaries

Definition 7.2.1 ([19]). A (right) Leibniz algebra p over K is a K-module
together with a bilinear operation [, ]: p x p — p, called the Leibniz bracket,
which satisfies the Leibniz identity:

[[p1, p2]. p3] = [p1, [p2, p3]] + [[p1, p3], p2],

for all p1,p2,p3 € p. For the opposite structure, that is left Leibniz algebras,
the identity is

[p1, [p2, p3]] = [[p1, 2], p3] + [p2, [P1, D3]],

for all P1,p2,P3 € P.
A morphism of Leibniz algebras is a K-linear map that preserves the

bracket. We will denote by Lb the category of Leibniz algebras and mor-
phisms of Leibniz algebras.

If the bracket of a Leibniz algebra p happens to be antisymmetric, then
p is a Lie algebra. Furthermore, every Lie algebra is a Leibniz algebra. For
more examples, see [19].

Recall that a Leibniz algebra p acts on another Leibniz algebra q if there

are two bilinear maps p x 9 — ¢, (p,q) — [p,q] and g x p — q, (¢,p) — [, p],
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satisfying six identities, which are obtained from the Leibniz identity by taking
two elements in p and one in q (three identities) and one element in p and two
elements in q (three identities). See [2I] for more details. Given an action of
a Leibniz algebra p on another Leibniz algebra ¢, it is possible to consider the
semidirect product q x p, whose Leibniz structure is given by:

[(q1,71), (a2, p2)] = ([q1, 2] + [p1, q2] + [q1,p2], [P1, P2]),

for all (q1,p1), (g2,p2) € 9@ p.

Definition 7.2.2 (|2I]). A representation of a Leibniz algebra p is a K-module
M equipped with two actions p x M — M, (p,m) — [p,m] and M x p — M,
(m,p) — [m,p], satisfying the following three axioms:

[m, [p1, p2]] = [[m, p1], p2] — [[m, p2], p1],
[p1, [m, p2]] = [[p1, m], p2] — [[p1, 2], m],
[p1, [p2, m]] = [[p1, p2], m] — [[p1,m], p2],
for all m € M and p1,p2 € p.
A morphism f: M — N of p-representations is a K-linear map which is
compatible with the left and right actions of p.

Remark 7.2.3. Given a p-representation M, we can endow the direct sum of
K-modules M @ p with a Leibniz structure such that M is an abelian ideal
and p is a subalgebra. The converse statement is also true. It is evident that
the Leibniz structure of M @ p is the one of M x p, as described previously.

Definition 7.2.4 ([21]). Let p! and p” be two copies of a Leibniz algebra p.
We will denote by z; and x, the elements of p! and p” corresponding to z € p.
Consider the tensor K-algebra T(p! @p"), which is associative and unital. Let
I be the two-sided ideal corresponding to the relations:

[:L‘, y]r = TrYr — YrZy,
[‘/Ev y]l = T1Yr — Yrxy,
(yr + yi)z = 0.

for all x,y € p. The universal enveloping algebra of the Leibniz algebra p is the
associative and unital algebra

UL(p) = T(p' @ p")/1.
This construction defines a functor UL: Lb — Alg.
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Theorem 7.2.5 ([21]). The category of representations of the Leibniz algebra
p is isomorphic to the category of left modules over UL(p).

Proof. Let M be a representation of p. It is possible to define a left action of
UL(p) on the K-module M as follows. Given z; € p, z, € p” and m € M,

x-m = [z,m], Ty -m = |m,z].

These actions can be extended to an action of T(p! @ p”) by composition and
linearity. It is not complicated to check that this way M is equipped with a
structure of left UL(p)-module.

Regarding the converse statement, it is immediate that, starting with a
left UL(p)-module, the restrictions of the actions to p! and p” give two actions
of p which make M into a representation. O

Although in [21] it is assumed that p is free as a K-module, in this theorem
the assumption is not necessary.

Recall that a left module over an associative algebra A can be described
as a morphism a: A — End(M), where M is a K-module.

Both Lb and Alg are categories of interest, notion introduced by
Orzech in [27]. See [25] for a proper definition and more exam-
ples. Categories of interest are a particular case of categories of groups
with operations as described by Ellis [I1], for which Porter [28] de-
scribed the notion of crossed module. Note that the definition of cate-
gory of groups with operations by Ellis and Porter is a particular case
of the general notion of category of groups with multiple operators by
Higgins [14]. The following definitions agree with the one given by
Porter.

Definition 7.2.6. A crossed module of Leibniz algebras (or Leibniz crossed

module) (q,p,n) is a morphism of Leibniz algebras n: ¢ — p together with an
action of p on ¢ such that

n(lp,ql) = [p,n(e)]  and  n([g,p]) = [n(a),pl,
[7(q1): ¢2] = [a1, 2] = [q1,m(q2)],

for all ¢,q1,q2 € q, p € p.
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A morphism of Leibniz crossed modules (p,1) from (q,p,7n) to (q',p’,7’)
is a pair of Leibniz homomorphisms, ¢: ¢ — ¢ and ¢: p — p’, such
that

Y =1n'e,
e([p.ql) = [¥(),e(@] and  »(lg,p]) = [¢(9),¥(p)];
for all g€ q, p € p.

Definition 7.2.7. A crossed module of algebras (B, A, p) is an algebra homo-
morphism p: B — A together with an action of A on B such that

pab) = ap(®)  and  p(ba) = p(B)a,
p(b1)ba = biby = bip(ba),
forall a € A, by,bs € B.

A morphism of crossed modules of algebras (p,): (B, A, p) — (B', A’,p')
is a pair of algebra homomorphisms, ¢: B — B’ and ¢: A — A’, such that

Yo = 0o,
p(ba) = p(b)ip(a)  and  p(ab) = (a)p(b),
forallbe B, a € A.
We will denote by XLie, XLb and XAlg the categories of Lie crossed mod-
ules, Leibniz crossed modules and crossed modules of associative algebras,

respectively. Crossed modules can be alternatively describe as cat!-objects,
namely:

Definition 7.2.8. A cat!-Leibniz algebra (p1,po,s,t) consists of a Leibniz
algebra p; together with a Leibniz subalgebra pg and structural morphisms
s,t: p1 — po such that
S‘PO = t|P0 = idpoa (CLbl)
[Kers,Kert] = 0 = [Kert, Ker s], (CLb2)
Definition 7.2.9. A cat'-algebra (A1, Ag, 0, T) consists of an algebra A; to-
gether with a subalgebra Ay and structural morphisms o,7: A7 — Ag such
that
ola, = 7|4, = iday, (CAs1)
KeroKert = 0 = Ker 7 Ker 0. (CAs2)
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The notions of cat!-Leibniz algebra and cat!-algebra are equivalent to the
corresponding crossed modules due to well-known categorical facts. In [I5],
Janelidze described crossed modules in semi-abelian categories using internal
actions in such a way that they are equivalent to internal categories. Note
that in this context every internal category is an internal groupoid. On the
other hand, cat!-objects are precisely internal reflexive graphs such that the
kernels of the domain and codomain maps commute. Leibniz algebras and
associative algebras form semi-abelian categories ([16]), which are therefore
Mal’tsev. In [5] it is proved that, for a Mal'tsev category, an internal reflexive
graph is an internal category if and only if the kernel equivalence relations of
the domain and codomain centralize each other in the sense of Smith ([30]).
Moreover they satisfy the so-called “Smith is Huq” condition ([24]), since they
are action accessible (see [4] and [25]). Under “Smith is Huq”, this condition on
the kernel equivalence relations is equivalent to the condition that the kernels
of the domain and codomain maps commute. Consequently, in this context
cat!-objects and internal crossed modules are equivalent.

Given a crossed module of Leibniz algebras (q,p,n), the corresponding
cat!-Leibniz algebra is (q x p,p, s,t), where s(¢,p) = p and t(¢,p) = n(q) + p
for all (q,p) € g x p. Conversely, given a cat!-Leibniz algebra (p1,po, s,t), the
corresponding Leibniz crossed module is t|kers: Kers — pg, with the action
of pg on Ker s induced by the bracket in p;. The equivalence for associative
algebras is analogous.

The standard functor liezation, Lie: Lb — Lie, p — Lie(p), where Lie(p)
is the quotient of p by the ideal generated by the elements [p, p], for p € p, can
be extended to crossed modules XLie: XLb — XlLie.

Given a Leibniz crossed module (q, p, ) its liezation XLie(q, p, n) is defined
Lie(q)
[a. )=

by the elements [q, p] + [p, q], for p € p, g € q. This construction can be found
in [13].

as the crossed module ( Lie(p),ﬁ), where [, p]x is the ideal generated

7.3 Representations of crossed modules

Since our intention is to extend Theorem to crossed modules, it is neces-
sary to give a proper definition of representations over Leibniz crossed modules
and left modules over crossed modules of algebras.

In the case of crossed modules of associative algebras, by analogy to the
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1-dimensional situation, left modules can be described via the endomorphism
crossed module:

Definition 7.3.1. Let (B, A,p) be a crossed module of algebras. A left
(B, A, p)-module is an abelian crossed module of algebras (V,W,d), that is
¢ is simply a morphism of K-modules and the action of W on V is trivial,
together with a morphism of crossed modules of algebras (p,¢): (B, A, p) —
(Homg (W, V), End(V, W, 9),T).

Note that End(V, W, 0) is the algebra of all pairs («, ), with @ € Endg (V)
and 8 € Endg (W), such that 0 = da. Furthermore, I'(d) = (dd, dd) for all
d € Homg (W, V). The action of End(V,W,d) on Homg (W, V) is given by

(aaﬁ)'d:ad and d(a)ﬁ):dﬁv
for all d e Homg (W, V), («, 8) € End(V, W, §). See [, 9] for further details.

Let (V,W,8) and (V/,W';d') be left (B,A,p)-modules with
the corresponding homomorphisms of crossed modules of algebras
(9,): (B, A,p) — (Homye(W, V), End(V, W,8),T) and (,0): (B, A,p) —
(Hompg (W', V'), End(V',W’,4"),T”). Then a morphism from (V,W,0) to
(V! W',§") is a pair (fy, fwr) of morphisms of K-modules fi: V — V/ and
fw: W — W’ such that

fwd =3d'fv,
(fv, fw)v(a) = ¥'(a)(fv, fw),
frep(d) = ¢'(b) fw,
forallbe B, a € A.

For the categories of crossed modules of groups and Lie algebras, represen-

tations can be defined via an object called the actor (see [10, 26]). However

this is not the case for Leibniz crossed modules (see [13]). Nevertheless, it is
possible to give a definition by equations:

Definition 7.3.2. A representation of a Leibniz crossed module (q,p,n) is an
abelian Leibniz crossed module (N, M, ) endowed with:
(i) Actions of the Leibniz algebra p (and so q via ) on N and M, such that
the homomorphism g is p-equivariant, that is
w(lp;nl) = [p, u(n)], (LbEQ1)
w([n, pl) = [p(n), pl, (LbEQ2)

for alln e N and p € p.
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(ii) Two K-bilinear maps &1: ¢ x M — N and &&: M x q — N such that

pé2(m, q) = [m, ql, (LbM1a)
pé(g,m) = [q,m], (LbM1b)
&2(u(n), q) = [n, ql, (LbM2a)
&1(g, u(n)) = [g,n], (LbM2b)
§a(m, [p, q]) = &2([m, pl, q) — [§2(m, ), p], (LbM3a)
&1([p, ql, m) = &([p,m], @) — [p, &2(m, @)], (LbM3b)
a(m, [q,p]) = [&2(m, q),p] — &2([m, pl, 9), (LbM3c)
&1([g, pl,m) = [&1(g,m), p] — &1(g, [m, p]), (LbM3d)
&a(m, [q,4']) = [&2(m, q),q'] — [&2(m. ¢), q], (LbM4a)
&(lg, ¢'1,m) = [&1(g,m), ¢'] = [g,&2(m, ¢)], (LbM4b)
&(q, [p,m]) = —&i(q, [m, p]), (LbMba)
[p,&1(g, m)] = —[p, &2(m, q)], (LbM5b)

for all g, €q, pep,ne N m,m' € M.

A morphism between two representations (N, M, ) and (N', M’ i) of a
Leibniz crossed module (g, p,n) is a morphism of abelian Leibniz crossed mod-
ules (fn, far): (N, M,u) — (N', M’ 1) that preserves the actions together
with the morphisms from (ii).

Remark 7.3.3. As in Remark given a (q, p, n)-representation (N, M, u),
we can obtain a Leibniz crossed module structure on (N x q, M X p, u @ n)
where (N, M, 1) is an abelian crossed ideal and (q, p, n) is a crossed submodule
of (N xq,M x p,u@®n) respectively. The converse statement is also true.
Moreover, a representation can be seen as an action of (q,p,n) over an abelian
Leibniz crossed module (N, M, 1) in the sense of [13].

7.4 Universal enveloping crossed module of alge-
bras of a Leibniz crossed module

Let (q,p,n) be a Leibniz crossed module and consider its corresponding cat!-
Leibniz algebra

qw%p,
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with s(¢,p) = p and t(q, p) = n(q) + p for all (¢,p) € q x p. Now, if we apply
UL to the previous diagram, we get

UL(s)

UL(q  p) ?UL(P) :

Although it is true that UL(s)|yLy) = UL(t)|urp) = idu(p), in general, the
second condition for cat'-algebras is not satisfied. Nevertheless, we can
consider the quotient UL(qxp) = UL(qxp)/X, where X = Ker UL(s) Ker UL(¢)+
KerUL(t) Ker UL(s), and the induced morphisms UL(s) and UL(¢). In this way,
the diagram

UL(s

UL(q » p) ?@)m(p)

is clearly a cat!-algebra. This construction is just a particular case of the
general categorical way of obtaining an internal groupoid from a reflexive
graph in a semi-abelian category satisfying the “Smith is Huq” condition.

Note that UL(p) can be regarded as a subalgebra of UL(q x p).

We can now define XUL(q, p, n7) as the crossed module of associative algebras
given by (KerUL(s), UL(p), UL(t)|kero7(s))- This construction defines a functor
XUL: XLb — XAlg.

Immediately below we prove a very helpful lemma which gives us a proper
description of Ker UL(s).

Lemma 7.4.1. The elements of the form (q1,p1) ® - ® (qx, px) such that
there exists 1 < i < k with p; = 0, generate Ker UL(s).

Proof. Let J be the ideal of T(p' @ p") generated by the three relations of
Definition Let I be the ideal of T ((q x p)! @ (q x p)") generated by the
preimage by T(s@® s) of those relations. Then I is the ideal generated by

(q1,2)r ® (g2, 0")r — (g3, 0")r ® (q4,P)r — (g5, [P P'])rs
(q1,0)r @ (q2,0")1 — (3, 9" )1 ® (qu, ) — (a5, [P P'])1,
(q1,2)r ® (g2, ") + (q1,P)1 ® (g2, 0" )i-

Additionally, the kernel of T(s @ s) is generated by elements as those in
the statement of this lemma and by elements of the form (q1,p1)a, ® -+ ®
(9 Pr)ay, — (@1, P1)ay ® - ® (4}, Pk )ay,» Where ay, can be 7 or I. Since T(s @ s)
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is surjective, the kernel of UL(s) will be generated by I and Ker T(s®s). Let
us check that all these generators are of the claimed form.

Given (¢1,0)a; ® (2:0)as — (43,7 )y ® (¢4,D)ay € Ker T(s @ s), we have
that

(q1,7)a1® (92, P)ar — (43,7 oy ® (44, D)z
= (q1,7)a1 ® (42, P)as — (43,0 )ar ® (¢4, D) s
+ (91,0 )ar ® (445P) e — (q1,0 )y ® (445 D) s
= (q1,7)on ® (22 — 44,0)ay + (01 — 43,0) 0y ® (¢4, D)

By induction one can easily derive that the elements in Ker T(s@®s) are of the
expected form.

Let us take (q1,p)r ® (q2,0")r — (¢3,9")r ® (¢4, P)r — (g5, [P, P'])r € I. Then,

(q1.0)r ® (42,0")r — (43, 0")r ® (@45 0)r — (a5, [0, P'])r

= (q1,0)r ® (22, 0")r — (@1 2)r ® (43, 0")r + [(@a: ), (a3, 0")]r — (a5, [P P'])r

= (q1,0)r ® (42, 0")r — (@4:0)r ® (a3, 0")r + (¢, [0, 0'])r — (a5, [P, D'])r
® (

= (q1,0)r ® (22, 7")r — (@4, 0)r ® (g3,0")r + (¢' — ¢5,0)r,

and then we proceed as in the previous case. For the second and third identities
the argument is similar. O

Observe that there are full embeddings
Io, I;: Alg —_— XAlg (resp. J(), J1: Lb — XLb)

defined, for an associative algebra A (resp. for a Leibniz algebra p), by
Io(A) = ({0}, A,0), I1(A) = (A, A,ida) (resp. Jo(p) = ({0},p,0), Ji(p) =
(p, p, idp)), where the action is given by multiplication in A (resp. p). The
functor XUL: XLb — XAlg is a natural generalization of the functor UL, in the
sense that it makes the following diagram commute,

Lb—2"5 XLb

o |

Alg 1 XAlg

Regarding the embeddings I; and J;, we have the following result.
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Proposition 7.4.2. There is a natural isomorphism of functors
XULo J; =~ I; o UL.

Proof. Let p € Lb. It is necessary to prove that XUL(p,p,id,) is naturally
isomorphic to (UL(p),UL(p),idyr(p)). In order to do so, we will show that
(UL(?)| ker oz (s) Idur(p)) is an isomorphism of crossed modules of algebras be-
tween (Ker UL(s), UL(p), UE(t) cor () andl (UL(p), UL(p), idyp):

It is easy to check that (UL(¢)|keor(s)>idur(p)) is indeed a morphism of
crossed modules of algebras. Recall that the first step in the construction of
XUL(p, p, idy) requires us to consider the cat!-Leibniz algebra

pw%m

with s(p,p’) = p' and t(p,p’) = p+p' for all p,p’ € p. Let us define the Leibniz
homomorphism €: p — p xp, e(p) = (p,0). It is clear that se = 0 and te = id,.

The next step is to apply the functor UL on the previous cat!'-Leibniz
algebra and take the quotient of UL(p x p) by X = KerUL(s) KerUL(t) +
Ker UL(t) Ker UL(s) in order to guarantee that we have a cat!-algebra. In the
next diagram of algebras,

UL(e) UL(s)
UL(p) —————>UL(p x p) . UL(p)

UL
| =
UL(p x p) —"TL(r)

where 7 is the canonical projection, it is easy to see that UL(s)wUL(e) =
UL(s)UL(e) = UL(se) = 0 and UL(¢)7UL(e) = UL(¢t)UL(e) = UL(te) =
idy(p). Hence mUL(e) takes values in KerUL(s) and it is a right inverse for
ﬁ(t)‘Kerﬁ(s)'

Now we need to show that mUL(e)UL(t) = idge,gr(s)- Note that X' <
KerUL(s), so KerUL(s) = KerUL(s)/X and, as proved in Lemma [7.4.1
KerUL(s) is generated by all the elements of the form

(P1,P) ® @ (93,0) ® - - - ® (pk, D)) (7.4.1)
with pj,p;- ep, 1 <i,j <k. By the definition of UL(¢) and UL(¢), the value of

UL(€) UL(t) on is
(P1+91,0)® - ® (9,0) ® - ® (px + P}, 0). (7.4.2)
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Furthermore, one can easily derive that, in Ker UL(s)/X,

(p1 +9,0)® - (9i,0) ® -+ @ (px + P, 0)
= (p1,01) ® @ (pi,0) ® -+ @ (P + P} 0),

By applying the same procedure as many times as required, one can deduce
that

(p1+71,0)®@ @ (p;,0) @+ ® (pg + P}, 0)
=(p1,p)) Q@ (pi,0) ® - ® (ks P)-

Thus, the elements (7.4.1)) and (7.4.2]) are equal in Ker UL(s)/X and it follows
that

7TUL(G)ﬁ@”Kcrﬁ(s) = ichrﬁ(s) :
Therefore we have found an inverse for the morphism of crossed modules of
algebras (UL(t) e, oz (s)» 1dur(p))- It is fairly easy to prove that this construction
is natural. ]

7.5 Isomorphism between the categories of repre-
sentations

In this section, we give the construction of an isomorphism between the cat-
egories of representations of a Leibniz crossed module and left modules over
its corresponding universal enveloping crossed module of algebras. Recall that
the method used in the proof of the equivalent result in the case of Lie alge-
bras cannot be applied in our case due to the lack of actor in the category of
Leibniz crossed modules.

Theorem 7.5.1. The category of representations of a Leibniz crossed mod-
ule (q,p,n) is isomorphic to the category of left modules over its universal
enveloping crossed module of algebras XUL(q,p,n).

Proof. Let (N, M, p) be a left (KerUL(s), UL(p), UL(?)|ker o7 (s))-module. Then
we have a homomorphism

(0, 9): (KerUL(s), UL(p), UL(t) |keron(s)) — (Homge (M, N), End(N, M, ), T),

such that 1 o UL(t) |kerr(s) = I' © @5 @(ba) = ¢(b)(a) and p(ab) = 1 (a)p(b).
We need to define actions of p on N and M satisfying (LbEQ1|) and (LbEQ2)
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and we need to define £&1: q x M — N and &: M x q — N satisfying identi-
ties (LbM1a))—(LbMS5b]).

We define the actions of p on N and M as those induced by ¢ : UL(p) —
End(N, M, p1) as in Theorem [7.2.5] The identities (LbEQI]) and (LbEQ2) fol-
low from the properties of End(N, M, ). We define the morphisms & and
& by &i(g,m) = ¢((g,0))(m) and &(m,q) = ©((g,0),)(m). The identi-
ties (LbM1a)), (LbM2a)) and (LbM1b]), (LbM2b)) follow from the commutative
square ¢ o UL(¢)|ke o5y = I © ¢ applied to the elements (g,0), and (g,0),
respectively. Given the element ([p,q],0), € KerUL(s), we have that

([p,ql,0)r = [(0,p)r, (q,0)r] = (0,p)r(q,0)r — (g,0), (0, p)s.

Applying ¢ to this relation and using that ¢(ba) = ¢(b)y(a) and @(ab) =
QP(G)@(b) we obtain 90(([ ’Q]’O)T) = ¢2(p1”)§0((%0)7“) - 90((Q70)r)w1(pr)
which implies . Proceeding in the same way for the elements
([p,ql,0), ([g,p],0)r and ([g, p], 0); we check that identities (LbM3b]), (LbM3c])
and are satisfied. Doing a similar argument on the elements
([g,4'],0), and ([q,q'],0); we obtain identities and . Ap-

plying ¢ to the relations

(O7p)l(Q70)l = _(Oap)r(qv O)l and (Q70)l(07p)l = _(q¢0)7"(0¢p)l

we have identities (LbMbal) and (LbMb5b|) respectively.

Conversely, let (N, M, u) be a (q,p,n)-representation. We need to con-
struct a morphism of crossed modules of algebras (¢, ) from XUL(q,p,n) to
(Homg (M, N),End(N, M, 11),T'). The homomorphism ¢ = (¢1,12): UL(p) —
End(N, M, i) is the homomorphism induced by the actions of p on N and M

as in Theorem It is well defined due to identities (LbEQ1)) and (LbEQ?2]).
Consider the homomorphism of K-modules ®: (qxp)!@(qxp)” — Homg (ND

M, N @ M) defined by

®(g,p)i(n,m) = ([g,n] + [p,n] + & (g, m), [p, m]),
®(g,p)r(n,m) = ([n,q] + [n, p] + &2(m, q), [m, p]).

Note that they can also be rewritten as

®(q,p)i(n,m) = (t(g, p)i(n) + & (g, m), s(q, p)i(m)),
®(q,p)r(n,m) = (t(g, p)r(n) + &2(m, q), s(q, p)r(m)).
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By the universal property of the tensor algebra, there is a unique homomor-
phism

T(®): T ((q % p)' @ (qxp)") > Homg (N & M,N @ M),

commuting with the inclusion.

We consider the projection 7: Hompg (N & M, N & M) — Homg (M, N &
M), where 7(f)(m) = f(0,m), and denote ¢’ = m o T(®). Given an element
of the form (¢',p')r(¢,0)r — (¢, 0)r (¢, 0)r + [(q,P)r, (¢',P')r] We obtain that

¢ ((d )@, 0)r = (a:)r(d 1) + [(a; )r,(q’,p’) 1)(m)
= [&a(m, d), ] + [[m, 1], ] + [&2(m, '), p]
—[&2(m,q), ¢l = [[m, p],d'] = [&2(m, q), D]
+ & (m, [g, ]) + &a(m, [q,p']) + &a(m, [¢', p]) = 0,
by the properties of &s.
Analogously, it is possible to prove that ¢’ vanishes on the other two rela-
tions of the universal enveloping algebra. Then ¢’ factors through UL(q x p).

In order to ease notation we will refer to it as ¢’ as well.
By definition it is clear that ¢'|keru(s) (M) S N and T(®)((q x L)

(@ xp)")(N) = Tt)((q » p)' @ (9 x» p)")(N). Then ¢ factors through
Ker UL(t) Ker UL(s). Moreover, we have that
' ((¢.p)r(d',P))r) (m) = ([S2(m, @), ¢'] + [&20m, 0). P'] + &2(Im. p), @), [[m. p]. P])
= (52( ’[ (q p)T’ ]) [52(m Q) t(%p)r]
+ [f2(m7Q)’ (q y D )7"]7 (C] » D )r (Qap)rm)-

Extending this argument we see that ¢’ also factors through
Ker UL(s) Ker UL(?).

(qxp)@(qxp) —2— Homg(N@®M,N®M) —">Homy (M, N & M)
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Therefore, ¢ will be the restriction of ¢’ to Ker UL(q x p) and it will take values
in Homg (M, N), that is

¢: KerUL(q x p) — Homg (M, N).
With these definitions of ¢ and v, to check that
(0, 4): (KerUL(s), UL(p), UL(t) |kerv(s)) — (Homp (M, N), End(N, M, ), T')

is a morphism of crossed modules of algebras is now a matter of straightforward
computations. ]

7.6 Relation with the Loday-Pirashvili category

In [22], Loday and Pirashvili introduced a very interesting way to see Leibniz
algebras as Lie algebras over another tensor category different from K-Mod,
the tensor category of linear maps, denoted by LM. In this section we will
extend this construction to crossed modules and check that the relation with
the universal enveloping algebra still holds in the 2-dimensional case.

Definition 7.6.1 ([22]). Let M and g be K-modules. The objects in LM are
K-module homomorphisms (M % g). In order to ease notation we will simply
write (M, g) if there is no possible confusion. Given two objects M > g and

N LA b, an arrow is a pair of K-module homomorphisms ¢;: M — N and
02: g — b such that o 01 = gooa. LM is a tensor category with the tensor
product defined as

B

(1 % )@ (N 2 p) = (Mb)@ (geN) e

a®hb).

An associative algebra in LM is an object (A LA R) where R is an associa-
tive K-algebra, A is a R-bimodule and S is a homomorphism of R-bimodules.

A Lie algebra in LM is an object (M % g) where g is a Lie algebra,
M is a right g-representation and « is g-equivariant. Given a Lie algebra
object in LM, its universal enveloping algebra in LM is (U(g) ® M — U(g)),
1®m +— a(m). The action is given by

g(x®m) = gr®m and (x®m)g = rg®@m+x®[m, g], g,x € g, me M.
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A Leibniz algebra p can be viewed as a Lie algebra object in LM, namely
p — Lie(p).

Definition 7.6.2. Let (4 % R) and (B LN S) be two associative algebras in
LM. We say there is an action of (A, R) on (B, S) if we have the following:

e An action of algebras of R on S;
e an R-bimodule structure on B, compatible with the action of 5

e two homomorphisms &: A®r S — B and &: S ®r A — B, such that
él(a) S)S/ = fl(a, 85/)7 sfl (CL, S,) = 52(85 a)sla 852(5/)(1) = 52(58/)60;

e (3is also a homomorphism of R-bimodules, such that 3(¢1(a, s)) = a(a)s
and B(&(s,a)) = sa(a).

A crossed module of associative algebras in LM is an arrow (w1,w2): (B,S) —
(A, R) and an action of (A, R) on (B, S) such that

e w9 with the action of R on S is a crossed module of associative algebras;

e w; is a homomorphism of R-bimodules satisfying aws(s) = w1 (¢1(a, s)),
wa(s)a = wi(&a(s,a)), &1 (wi(b),s) = bwa(s) = bs and & (s,wi(b)) =
wa(s)b = sb.

Let (w1, w2): (B, S, 5) — (A, R, ) be a crossed module of algebras in LM.
We can associate to it the crossed module of algebras

(B®S,A® R,wi Qws), (7.6.1)
where
(a,r)(d',7") = (a(a)a’ + ar’ +rd’,rr'), a,a’ € A, r,7" € R,
(b, s)(V,s') = (B(b)Y + bs' + sb', ss'), bt € B, 5,5 € 8.

Definition 7.6.3. Let (M = g) and (N LA h) be two Lie algebras in LM.
We say there is a right action of (M, g) on (N,b) if we have the following:

e Compatible right Lie actions of g on h and N;

e a homomorphism £: M ® h — N such that [£(m, h), g] = £([m, g], h) +
‘f( >[h7g]) and ‘f( >[h>h‘/]) = [é( ) ] [E(m7h/)ah
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e 3 is g-equivariant and it satisfies that 8(¢(m,h)) = [a(m), h].

A crossed module of Lie algebras in LM is an arrow (g1, 02): (N,h) — (M, g)
and an action of (M, g) on (N,h) such that

e 0o with the right Lie action of g on h is a crossed module of Lie algebras;

e 01 is a g-equivariant homomorphism such that o; (§ (m, h)) = [m, 02(h)]
and [n, h] = £(01(n), h) = [n, 02(h)].

Let (01,02): (N,h) — (M,g) be a Lie crossed module in LM. We con-
struct the semidirect product in LM by obtaining a Lie object (N®M, b x g),
where [(n7 m)a (ha g)] = ([na h] +[TL, g] +§(m7 h)v [m> g]) Let (817 32) and (tlv t2)
be two arrows in LM

NoM—=%M
t1
B@al \La
52
hxg tﬁ g
2

where Sl(nam) =m, SQ(hag) =g and tl(nam) = Ql(n) +m, tQ(hag) = QQ(h) +
g. We apply the universal enveloping algebra functor in LM to the previous
diagram.

U(h>9) ® (N@M)jU( ) ®

tl)
U(ﬁ@a)l lU(a)
U(s2)
U(h x g) ?U(g)

Considering U(g) as a subalgebra of U(h x g), there are induced algebra
actions of U(g) on U(h x g) and on U(h x g) ® (N @ M). There are also two
morphisms

1: (U(9) ® M) Qu(g) U(h x g) = U(h x g) ® (N @ M),
§2: U(h x g) ®y(g) (U(g) @ M) - U(hxg)® (N @ M),

where fl((l ® m),(h,g)) = (h,g9) ® (0,m) + 1 ® (&(m,h),[m,g]) and
&((h, 9), (1®@m)) = (h, g)®(0,m), where £: M®Hh — N is the homomorphism
from the action of (M, g) on (N, h). These actions and homomorphisms define
an action of algebras in LM.
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Let wus consider the ideal of U(hxg) ® (N @& M) given by
V' = KerU(s;)KerU(ta) + KerU(se)KerU(t;) + KerU(t;) KerU(sa) +
Ker U(t2) Ker U(s1) and the ideal of U(h x g) given by X’ = Ker U(s2) Ker U(t2)+
KerU(ty) KerU(ss).

Lemma 7.6.4. The two squares

Ubxg)®(NSM)

(1)

Vi —=Ug @M
(t1)
U(ﬁeaa)l lv(a)
uh » g) v

s )
vy — /(|
A’ Ut)

are well defined. Moreover, the actions of U(g) on Ul x g) and Uh X g)@(N D
M) and the morphisms & and & factor through X' and )'.

Proof. Since the bottom row is the Lie algebra case, the proof can be found
n [I3]. The top row follows by definition of ). The homomorphism U(8 @® «)
is zero in )’ by the equivariance of o @ 8 and the commutativity of the di-
agram. Again, the action of U(g) on X’ is zero since we are exactly in the
Lie case. It is obvious that X’ acts trivially on U(h x g) ® (N @ M) and that
U(h % g), and consequently U(g), acts trivially on ). Let 1®@m € U(g) ® M.
Then & (KerU(sz)KerU(tz),1 ® m) = KerU(sy) KerU(t2) @ (0,m) < V'
and the same happens for KerU(ty) KerU(sz). On the other hand, & (1®
m, Ker U(sz) Ker U(t)) is equal to KerU(sz)KerU(ts) ® (0,m) < V' plus
Ker U(sy) Ker U(t2) acting on 1 ® (0,m), which clearly is also inside ). O

We consider now (KerT(s1), KerU(s2)). The restriction of (U(t1),T(t2))
and U(S @ «) to this kernel will be denoted in the same way by abuse of
notation. Then we have the following result.

Theorem 7.6.5. Let (01,02): (N,h) — (M,g) be a Lie crossed module in
LM. The following square illustrates a crossed module of algebras in LM
with the induced actions

Ker U(s1) —2 0(g) ® M

- |
)

Ker U(sg) ——— U(g)
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Moreover, it is the universal enveloping crossed module of algebras of
(01,02): (N,b) = (M, g) in LM.

Proof. The action is studied in Lemma [7.6.4] and the bottom row is a crossed
module of algebras since it is just the Lie algebra case. The second condition
follows straightforwardly from definitions of &; and &s. O

Let us now consider a crossed module of Leibniz algebras (q,p,n). It can
be viewed as a crossed module of Lie algebras in LM as a square

g———>p
Voo
Lie(q) 7

o pls ——>Lie(p)

We can consider its universal enveloping algebra, obtaining that way a crossed

module of algebras in LM

KerU(s1) Ly (Lie(p)) ® p

Lo
Ker U(sy) — 25 U (Lie(p))

Following the construction ([7.6.1)) we obtain its corresponding crossed module
of associative algebras in the classical setting

(KerU(sl) @ KerT(s2), (U(Lie(p)) @ p) @ U(Lie(p)), (U(t1), U(tg))) :

Theorem 7.6.6. Let (q,p,n) be a crossed module of Leibniz algebras. Its
universal enveloping crossed module of algebras XUL(q,p,n) is isomorphic to
the crossed module of algebras defined above.

Proof. We have the following diagram

ﬁ(tl

U (Lie(qxp)) ® (g p) —L U (Lie(p)) @p

b,

U (Lie(q xp)) _ )y (Lie(p))
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By [21 (2.4) Proposition] we know that the direct sum of the two objects of the
first column is isomorphic to UL(g » p) and the direct sum of the objects of the
second column is isomorphic to UL(p). Let X’ be the ideal Ker UL(s) Ker UL(t) +
KerUL(t) Ker UL(s) defined in Section Consider the isomorphism

0: UL(qxp) > <U (Eeé]qj . Lie(p)) ® (q % p)) QU (Eep(]qx) . Lie(p)>

defined on generators by 0((q,p)r) = (q,p) and 9((q,p)l) =1® (7,p). We
need to check that it maps X to X’ + )’ and 6~ maps X’ + )’ to X, but this
follows straightforwardly by the definitions of X', X’ and )’ completing the
proof. O
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Chapter 8

Do n-Lie algebras have
universal enveloping algebras?

Abstract

The aim of this paper is to investigate in which sense, for n > 3, n-Lie algebras admit
universal enveloping algebras. There have been some attempts at a construction
(see [1I] and [5]) but after analysing those we come to the conclusion that they
cannot be valid in general. We give counterexamples and sufficient conditions.

We then study the problem in its full generality, showing that universality is
incompatible with the wish that the category of modules over a given n-Lie algebra L
is equivalent to the category of modules over the associated algebra U(L). Indeed, an
associated algebra functor U: n-Liex — Algk inducing such an equivalence does exist,
but this kind of functor never admits a right adjoint.

We end the paper by introducing a (co)homology theory based on the associated
algebra functor U.

Reference

X. Garcia-Martinez, R. Turdibaev, and T. Van der Linden, Do n-Lie algebras
have universal enveloping algebras, J. Lie Theory 28 (2018), no. 1, 43-55.

8.1 Introduction

The algebraic concept of an n-Lie algebra (also called a Filippov algebra or a
Nambu algebra) is a natural generalisation of Lie algebras. Alternative general-
isations of Lie algebras to n-ary brackets exist, such as Lie triple systems [17],

189
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but we shall not study those in the present paper. By definition, an n-Lie
algebra is a K-module with a skew-symmetric n-ary operation which is also a
derivation. In recent years these have shown their relevance in some areas of
physics such as Nambu mechanics [20] or string and membrane theory [2 [3].

In this article we investigate how to extend the concept of universal en-
veloping algebra, an important basic tool in theory of ordinary (= 2-) Lie
algebras, to n-Lie algebras where n > 3.

Given a Lie algebra L, its universal enveloping algebra U(L) has three
distinguishing characteristics:

(U1) equivalent representations: the category of Lie modules over L is equiv-
alent to the category of “standard” modules over U(L);

(U2) universality: the functor U: Liexk — Algk has a right adjoint
(_)Lie: AIgK - LieK

which endows an associative algebra with a Lie algebra structure via the
bracket [a,b] = ab — ba;

(U3) enveloping algebras are enveloping: if L is free as K-module (for instance,
whenever K is a field), then the L-component 7,: L — U(L) of the unit n
of the adjunction considered in (U2) is a monomorphism [16].

In the literature, already some attempts at introducing universal envelop-
ing algebras for n-Lie algebras have been made [0, 11]. However, in the be-
ginning of Section [8.3] we give an example showing that those cannot be fully
valid. The problem with these approaches is that they depend on the existence
of a functor from n-Liek to Liek, analogous to the Daletskii-Takhtajan functor
for Leibniz algebras [I0]. The construction proposed in [5], though, produces
an object is not always a Lie algebra. That is to say, the “functor” in question
does not land in the right category. In Corollary and Proposition [8.3.6
we give some conditions which establish when the construction of [5] is, or
isn’t, a Lie algebra. Luckily, this imprecise definition is not an obstruction to
further results in the papers [5] 1], since those focus on simple n-Lie algebras
over the complex numbers, and in Remark we explain that for those
n-Lie algebras the construction proposed in [5] [I1] does indeed work. Never-
theless, the general definition of universal enveloping algebra proposed there
is not correct.
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Another point of view in this topic was given by Elgendy and Bremner
in [12], where they study the universal enveloping algebra of an n-Lie algebra
in an alternative setting. Although it does not give us information about our
problem, this framework is also interesting and challenging.

One problem we face when extending the concept of universal enveloping
algebra to the category of n-Lie algebras is the lack of a natural generalisa-
tion of the functor (—)rie, so that U cannot be defined via (U2). Therefore,
using a standard categorical technique, in Section we define a functor
U: n-Liexk — Algk such that (U1) holds: the category of modules over an n-
Lie algebra L is equivalent to the category of U(L)-modules. It happens that
this functor does not have a right adjoint. In fact, we prove that any functor
satisfying (Ul) cannot have a right adjoint of the kind needed for (U2), so that
the requirements (U1) and (U2) are shown to be mutually incompatible. And
without condition (U2), the third requirement (U3), which asks that compo-
nents of the unit of the adjunction from (U2) are monomorphisms, loses its
sense. We thus end up with a functor U: n-Liex — Algy satisfying just (U1),
which we call the associated algebra functor.

In the final Section we extend Lie algebra (co)homology to a
(co)homology theory based on this associated algebra functor and we prove it
to be different from the cohomology theories introduced in [23], [I0] and [I].

8.2 Preliminaries on n-Lie algebras

Let K be a commutative unital ring and n a natural number, n > 2. The
following definitions first appeared in [I3] [§].

8.2.1 n-Leibniz algebras and n-Lie algebras

An n-Leibniz algebra L is a K-module equipped with an n-linear operation
L™ — L, so a linear map [—,...,—]: L& — L, satisfying the identity

n
1, znl,yns - yn1] = 2 |21, @it [, 1, Ul Tign, - T
=1

(*)
for all x;, ¥; € L. A homomorphism of n-Leibniz algebras is a K-module
homomorphism preserving this bracket; this defines the category n-Leibk.
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An n-Lie algebra is an n-Leibniz algebra L where the bracket [—, ..., —]
factors through the exterior product to a morphism

ANL=LA---ANL— L.

n factors

We thus obtain the full subcategory n-Liek of n-Leibk determined by the n-Lie
algebras.

The latter condition means that the bracket [—, ..., —] is not just n-linear,
but also alternating: it vanishes on any n-tuple with a pair of equal coordi-
nates. In other words, [x1,...,2,] = 0 as soon as there exist 1 <i < j <n
for which z; = ;.

When n = 2, identity yields the Leibniz identity. In this case, being
alternating is equivalent to skew-symmetry, which gives the Jacobi identity.
Thus the above definition describes Leibniz and Lie algebras, respectively.

8.2.2 Derivations

A linear endomap d: L — L on an n-Lie algebra L is called a derivation if

d([z1, w2, . wn]) = Do, d(@), .. wn).
i=1

The K-module of all derivations of a given n-Lie algebra L is denoted by
Der(L) and forms a Lie algebra with respect to the commutator [dy,ds2] =
dids — dady.

8.2.3 Ideals

An ideal of an n-Lie algebra is a normal subalgebra. It is easily seen that a
K-submodule I of an n-Lie algebra L is an ideal if and only if [I, L,..., L] < I.
8.2.4 Right multiplication, adjoint action

Given a generator £ = 1 ® -+ - ® 1 of L®("_1)7 the right multiplication
and the adjoint action (also called left multiplication) by x are maps

R, = R(x1,...,2p—1) and ad, =ad(xy,...,2p-1): L > L
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respectively defined by

R(z1,...,2n-1)(a) = [a,x1,...,Tp-1]

and
ad(xl, .. .,$n,1)(b) = [I‘l, . .,$n,1,b]

for a, b e L. Clearly, ad, = (—1)""!'R,, and due to identity both maps are
derivations. They are called inner derivations of L and generate an ideal
InnDer(L) of Der(L). We will use the same notations ad, and R, for the
extensions (by derivation) of these maps to the entire tensor algebra T'(L).
(That is to say, Rz(a1 ® a2) = Rz(a1) ® az + a1 ® R;(az), etc.)

8.2.5 The centre

The ideal Z(L) = {z € L | ad,(z) = 0,Yz € L®" D} is called the centre of
L.

8.2.6 Simple n-Lie algebras

Given an ideal I, we write I' = [I, L, ..., L] for the K-submodule spanned by
the elements R, (i) where i € I and 2 € L&~ It is easy to see that I' is an
ideal of L. If L' # 0 (so that it is non-abelian, i.e., it doesn’t come equipped
with the zero bracket) and L does not admit any non-trivial ideals then L is
called a simple n-Lie algebra.

We now recall from [I3] an important example of an (n + 1)-dimensional
n-Lie algebra which is an analogue of the three-dimensional Lie algebra with
the cross product as multiplication.

Example 8.2.1. Let K be a field and V;, an (n+1)-dimensional K-vector space
with a basis {e1,...,en+1}. Then V,,, equipped with the skew-symmetric n-ary
multiplication induced by

n+1+i ;
[61,...,ei,1,€i+1,...,€n+1]=(—1) €, I1<i<n+1,
is an n-Lie algebra.

This algebra is a simple n-Lie algebra. Conversely, as shown in [18], over
an algebraically closed field K all simple n-Lie algebras are isomorphic to V;,.
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8.2.7 Leibniz and Lie algebras associated to an n-Lie algebra
Given an n-Lie algebra L, we introduce the operations

[ —]: L2 - LBV @y o [2,y] = adu(y),

—0—: LB , 1801 2@y s zoy = 3 (ads(y) — ady(z)).

Note that o is skew-symmetric. Furthermore, the operations coincide if and
only if ad;(y) = —ady(z), i.e., when [—, —] is skew-symmetric. These two
products have the following property relating them to the adjoint action.

Proposition 8.2.2. For any z, y € L2V the equality
[ad,, ady] = ad[, ) = adyoy
holds.

Proof. Let t = 29Q - - @xp, Yy = 42 & - Ry, and x1 € L. Then from identity
(x) we deduce

ady ad;(x1) = ad, ady (21 Z x1,...,ady(xg), ..., Tn),

which is equivalent to

[ad,,ady](z Z x1,x2,...,ady(xg),. .., zn] = —ad;(x1),
where z = ady(z). By symmetry, [ad,,ad;] = —ad,, where w = ad,(y).
Since InnDer(L) is a Lie algebra we obtain [ad,,ad,] = ad, = ad[,,) and
[ads, ady] = 3(ady —ady) = adgoy. O

The following result is due to Daletskii and Takhtajan [10].

Theorem 8.2.3. Let L be an n-Lie algebra. Then L&Y with bracket [—, —]
is a Leibniz algebra. O

This algebra is called the basic Leibniz algebra associated to an n-Lie
algebra L. We denote it by BLb® | (L).

Following [10] let us write K,,_; = Span{z € L&~ | ad, = 0} for the
kernel of the adjoint action. We recall the following result from [10].
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Theorem 8.2.4. The subspace K,,_1 is an ideal of BLb® | (L) and the quo-
tient algebra BLb® | (L)/K,_1 is a Lie algebra. O

This Lie algebra was introduced in [9] and called the basic Lie algebra
of the given n-Lie algebra L.

8.3 Algebras associated to an n-Lie algebra

Given an n-Lie algebra L over the complex numbers C, in the article [5] the
authors consider the algebra (A" 'L, 0). In Proposition 1 of [5], this product
o is claimed to satisfy the Jacobi identity. However, this cannot be correct,
as we may see in the following example of a 3-Lie algebra, which is a member
of the class of so-called filiform 3-Lie algebras given in [15]. For the sake of
simplicity let us denote J(a,b,¢) =ao(boc)+co(aob)+bo(coa).

Example 8.3.1. Consider the 3-Lie algebra with basis {1, 22, 23, 24, x5} and
the table of multiplication determined by

(21, x2, 23] = x4, (21, 22, 24] = [21, 23, 24] = [72, 73, 24] = 75.
Then J(z1 A 4,21 A To, T3 A Ta) = ix4/\x5 # 0.

In order to determine when the algebra (A" 'L, o) defined in [5] is actually
a Lie algebra, let us have a look at the terms of Jacobi identity.

Proposition 8.3.2. Let L be an n-Lie algebra. Then for any a, b, ce A" 'L
the following equality holds:

J(a, b, C) = _% ([adba adc] (a) + [adaa adb] (C) + [ada ada](b)) (T)
Proof. By Proposition we obtain
o (b o C) =l(ad (b o C) — adboc(a))

(ad ( (adb c ))) 2 adboc
—gada(adb( ) — & ada(ad b)) — [adb,ad 1(a).

After similar calculations for the other terms, equality follows. ]

Corollary 8.3.3. Let L be an n-Lie algebra with abelian InnDer(L). Then
(A""1L,0) is a Lie algebra. O
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Remark 8.3.4. Corollary provides us with a sufficient condition. Due
to the results in [2I], for n = 3 it also seems to be necessary. Indeed, while
considering a more general question, in that work a similar product appears.
Now given a free skew-symmetric ternary algebra (F,[—, —, —]), the authors
of [21] consider F' A F equipped with the product x - y = ady(z) — ad,(y) =
—2(z oy). Observe that (F' A F,-) is a Lie algebra if and only if (F' A F,0) is
a Lie algebra.

Remark 8.3.5. 1t is claimed in [21], Theorem 3.1] that if I is a non-zero minimal
ideal of F' such that quotient F'//I A F/I is a Lie algebra then

I = <[[x1,x2,x3],x4,$5] - [[331,1174,$5],CC27.’173] | Z; € F>

However, this result cannot be correct. Indeed, consider the central extension
F = Cz@ V3 of the simple 3-Lie algebra V3 over C from Example [8:2.1] We
have I = ([ad;,ady|(a) |ae F, x,ye F A F) < V3 so that I = V3 because V3
is simple. Set a = e3 A eq, b = €1 A €9, ¢ = e1 A z and observe that ad. = 0,
[adg, adp](e1) = e, which yields J(a,b,¢) = z A eq # 0. Hence (F A F,-) is
not a Lie algebra. However, by [4, Corollary 1.2.4], (V3 A V3, 0) is indeed a Lie
algebra (isomorphic to s04). As a consequence, Z(F') = Cz is another minimal
ideal with the property that the quotient algebra is a Lie algebra.

It follows that the condition of Corollary is sufficient, but not neces-
sary. A precise characterisation seems hard to find, but we have the following
partial result.

Proposition 8.3.6. Let K be a field and let L be a 3-Lie algebra over K such
that InnDer (L) is not abelian. If dim Z(L) > 2 then (A"'L,0) is not a Lie
algebra.

Proof. By assumption there are some z, y € LA L with [ad,,ad,]| = ad[z,) # 0.
Pick an element 2, € Z(L) and, if possible, take 25 € L such that ad[, ,j(22) ¢
Span{z1}. In other words, z1 A ad[,,1(22) # 0. Putting z = 21 A 22 yields
ad,(L) = 0 and adp,.)(z) + ad[, ;(y) = 0. However, [ads,ad,](z) = 21 A
ad[y4](22) # 0 and thus the Jacobi identity does not hold.

If such a z2 does not exist, then let us assume that ady, , (L) = Span{z }.
In this case, pick z3 € Z(L) linearly independent from z;. Choose a z4 € L
such that adp, (z4) = z1 and consider z = z3 A z4. Obviously, z # 0 and
—4J(z,y,z) = z3 A z1 which is not zero. O

In the remaining cases it is not clear whether (A"~!L, o) is a Lie algebra
or not.
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8.3.1 The basic Leibniz algebra BLb. (L)

It is hard to endow A" 'L with a Lie algebra structure but it inherits a Leibniz
algebra structure from the basic Leibniz algebra of [I0]. Consider the subspace

Wy—1=Span{z1 ® - Qzp—1 | ; = z; for some 1 <i < j<n—1}
of L®n—1),

Proposition 8.3.7. Let L be an n-Lie algebra. Then Wy_1 is an ideal of
BLb® (L) and A" 'L = BLb®_|(L)/W,_1.

Proof. First, note that for any w € W,_1 and v € L®" 1 we have [w,v] =
ady(v) = 0, so that W,,—1 € Ky—1. Forw =21 ® -+ ® 5p—1 € W,,—1, where
z;=xjforsomel <i<j<n-—landve L®(=1) we have

[v,w] = ady(w) =[z1,...,ady (), ..., Tj,. .., Tp_1]
+Hx1, .oy ade(25), - Tt
+ Z [SL‘l,...,adv(:l?k),...,$n71]Eanl
ki k]

since the sum of the first two terms and every summand in the sum belongs
to Wy_1. Hence W,,_1 is an ideal of the Leibniz algebra Bng?_l(L) and we
may conclude that A"~'L = BLb® | (L)/W,_1. O

Let us denote this Leibniz algebra (A""'L,[—,—]) by BLbA | (L). The

basic Lie algebra BLb® |(L)/K,_1 is a subalgebra of the Leibniz algebra
BLb2 | (L).
Remark 8.3.8. In [I1], given an n-Lie algebra L, the vector space A" 'L is
equipped with a product [z,y] = R.(y) = (=1)""!ad.(y). This algebra
coincides with BLb2 (L) up to a sign (—1)"~! in the multiplications. This
product is not skew-symmetric as shown in [4, Remark 1.1.16].

Proposition 8.3.9. BLb® | (L) = InnDer(L) if and only if Kp_1 = Wh_1.
Proof. Due to Proposition [8.2.2] and the n-Lie structure of L, the map
T=Tog A+ ATy ady

is a well-defined surjective Leibniz algebra homomorphism of BLb_; (L) onto
InnDer(L). Now if the kernel of this map is zero, which means ad, # 0 for all
x # 0, then this map is an isomorphism. O
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Remark 8.3.10. Consider the simple n-Lie algebra V,, over C of Example
It is easily seen that K,,_1 = W,,_1, so we have an isomorphism

BLbZ_(V,,)/Kn—1 = BLbA_ (V,,) = InnDer(V;,).

Moreover, by skew-symmetry of the bracket we have zoy = [z, y| and therefore
(A"~1L,0) is the same Lie algebra InnDer(V;,). A different construction of the
simple n-Lie algebra is given in [5] and it is proven in [I8] that its basic Lie
algebra happens to be s0,,41 (see also [4, Corollary 1.2.4]). Hence, the algebras
constructed in [I1] and [5] for V;, coincide with the basic Lie algebra [10]

BLb® | (V,,)/Kn_1 = BLbA_,(V;) = (A" 1L, 0) = InnDer(V,,) = s0,,11.

We may conclude that, although the constructions of the papers [11] and [5]
do not work in general, their results stay valid for the simple n-Lie algebra
case. In [I1] the finite-dimensional, irreducible representation of the simple
n-Lie algebra is studied and in [5] irreducible highest weight representations
of the same algebra are studied.

Remark 8.3.11. The recently published Erratum [6] states that Proposition 1
and the results of Section 2 of [5] are not generally correct unless the map

ad: A"V > AV

is skew-symmetric. Using our notation (and correcting A®V to End(A"~1V))
we assume that skew-symmetry of the homomorphism ad: A"V —
End(A""'V) means ad,(y) = —ad,(x) for all z, y € A""'V. This condi-
tion is equivalent to aob = ad,(b) = [a,b]. The latter one forces (A"~1V, o) to
coincide with BLbﬁ_l(V). Since one of them is antisymmetric and the other
one is Leibniz algebra, the result is a Lie algebra.

8.4 The associated algebra construction

8.4.1 The category of modules over an n-Lie algebra

Following [7] and [19, Section II.6], given an n-Lie algebra L over K, we say
that the category of L-modules or n-Lie modules over L is L-Modk =
Ab(n-Liek | L), the category of abelian group objects in the comma category
(n-Liex | L).
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This definition may be unpacked as follows: an L-module is a K-module
M with a structure of n-Lie algebra on M @ L such that L is a subalgebra
of M@® L, M is an ideal of M @ L, and the bracket is zero if two elements
are in M. A homomorphism of L-modules f: M — M’ is determined by an
n-Lie algebra homomorphism from M @ L to M’ @ L which restricts to the
identity on L. In the particular case of n = 2 we recover the notion of a Lie
representation.

This may be further decompressed as follows. An L-module is a K-module

M with a linear map [—,...,—]: (A" !L)® M — M satisfying the relations
[:Ul, ey Tn1s [Yly - ey Y1, M ] [yl, cey Yn—1, [T1, - ,:Un,l,m]]
n—1
yl,.. Jr1, s Tn—1, 9y Yn—1, m|
and

[["L‘l? s ,.In],y%. . 'aynflam] =
n—1 )
Z (_1)1171[;51, e Ty Ty [SL‘Z',yQ, e ,yn_l,m]],
=1

for all x;, y;, € L and m e M.

Example 8.4.1. The base ring K is an L-module via the trivial action.

8.4.2 The associated algebra functor

For any n-Lie algebra L, the category L-Modk is an abelian variety of algebras.
It is well-known that this makes it equivalent to the category of modules over
the endomorphism algebra of the free L-module on one generator [14, page
106]. This process determines a functor U: n-Liex — Algy from the category
of n-Lie algebras to the category of associative unital K-algebras such that
L-Modk is equivalent to the category Modyz) of “standard” modules over the
associative algebra U(L). The following proposition gives an explicit algebraic
description of the functor U.
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Proposition 8.4.2. Given an n-Lie algebra L, the algebra U(L) is the tensor
algebra of A"~ 'L quotient by the two-sided ideal generated by

(@1 A A1) YL A A Y1) — (WL A A Y1) (XL A A Zp)

n—1
Zyl/\ $17-~~7$n—1,yi]/\'”Ayn—1
and
[$17--'7$n]/\y2/\"'Ayn—1
n
Z "’ml/\ AT A ANT) (T AYL A A Yp—1),
forx;, y;e L and me M. O

Note that when n = 2 we obtain the universal enveloping algebra of a
Lie algebra. From the point of view of Proposition the equivalence of
categories L-Modk ~ Mody () may be recovered by using that the L-module
bracket [x1,...,z,—1, m] defines a U(L)-module action (x1 A - -+ A x,—1)m and
vice versa.

Example 8.4.3. Let L,, be the free n-Lie algebra on m generators with
m < n — 1. (An explicit description of the free n-Lie algebra can be found
n [22]). Then U(L,,) = K, since the (n — 1)st exterior product is zero.

Assume m = n—1. Then all brackets are zero and the relations of the asso-
ciated algebra vanish straightforward. Hence U(L,,) is K[X], the commutative
polynomial ring over K with one generator.

If m = n, we can forget the elements with brackets by the second relation
in Proposition [8:4.2] Thus we see that

(n—2)(ac1 AN AT )i A AYn—1) F W1 A AYn—1) (T A A X))

1=1

is zero.
In the case of m = n this relation vanishes. Therefore U(L,,) is isomorphic
to K(X1,...,X,), the non-commutative polynomial ring over K in n variables.

If m > n then U(L,) is the non-commutative polynomial ring on (’:)

elements quotiented by the two-sided ideal generated by the above relation.
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Example 8.4.4. Let L be an abelian n-Lie algebra with n generators. Then
U(L) = K[ X7, ..., X,—1] since the first identity of the associated algebra makes
it abelian, while the second one vanishes.

When n = 2 the functor U is universal in the sense that it has a right
adjoint. Let us explain why this is not possible for general n.

Lemma 8.4.5. Consider n > 2. If F': n-Liex — Algk preserves binary sums,
then there is an n-Lie algebra L for which F(L) is not Morita equivalent to
U(L).

Proof. Recall that if two rings (or, in particular, K-algebras) are Morita equiv-
alent, then their centres are isomorphic.

Let L1 be the free n-Lie algebra generated by one element. The coproduct
of n — 1 copies of Ly is the free n-Lie algebra on n — 1 generators, denoted
by L,—1. Its associated algebra U(L,_1) is K[X] as in Example whose
centre is itself.

Now K[X] cannot be Morita equivalent to F(L; + --- 4+ L1) =~ F(Ly) +
-+ 4 F(L1): the latter algebra being a coproduct, its centre cannot be bigger
than K, so is strictly smaller than K[X]. O

Theorem 8.4.6. The functor U: n-Liexk — Algx has a right adjoint if and
only if n = 2. More precisely, for n > 2 there is no functor F: n-Liex —
Algx with a right adjoint G: Algx — n-Liex such that there is an equivalence
of categories between L-Modk and Modp () for all L.

Proof. If n = 2 this result is well known. Consider the case when n > 2;
assume that there is an adjoint pair F' 4 G as required. Then, on the one hand,
F preserves binary sums, while on the other hand, we have an equivalence of
categories L-Modk ~ Modp(r) ~ Modyy) for any n-Lie algebra L. This is in
contradiction with Lemma [R.4.5] O

This theorem shows that for n > 2 there is no way we can obtain a functor
F: n-Liexk — Algy satisfying both requirements (U1) and (U2) of the introduc-
tion: to have an equivalence of categories between L-Modk and Modp(;, for all
L and to have a right adjoint for the functor F. In particular, it is shown that
U(L) does not satisfy (U2). Of course there may still exist other functors F
such that all F(L) are Morita equivalent to U(L).
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Remark 8.4.7. If K = Cand L = V,,, then U(L) coincides with the construction
of the universal enveloping algebra given in [I1] and [5]. Moreover, for any n-
Lie algebra L such that BLb? | (L) is also a Lie algebra, U(L) is isomorphic to
the universal enveloping algebra given in [I1]. However, if (A"'L,0) is a Lie
algebra, then U(L) might be different from the universal enveloping algebra
of [].

8.5 (Co)Homology theory and the associated alge-
bra

Let L be an n-Lie algebra and M an L-module. Let
MY ={meM|[z1,...,2,_1,m] =0 for all z; € L}

be the invariant submodule of M, and let M, = M /LM be the coinvariant
submodule. As in Lie algebras, we can obtain (co)homology theories deriving
the invariants and coinvariants functors.

Definition 8.5.1. The homology groups of M with coefficients in L,
denoted by Hy (L, M) are the left derived functors of (—);. The cohomology
groups of M with coefficients in L, denoted by H*(L, M) are the right
derived functors of (—)%.

There is an immediate relation between this (co)homology theory and the
associated algebra. Let ¢: U(L) — K be the K-algebra homomorphism sending
the inclusion of A"~!L to zero. Its kernel, Q(L), is called the augmentation
ideal. Therefore, (L) has a U(L)-module structure.

Proposition 8.5.2. Let L be an n-Lie algebra and M an L-module. There
are tsomorphisms

H. (L, M) =~ Tory “ (K, M),

Proof. As in the Lie algebra case (see [24]), we just have to check that the
underlying functors are the same.

U(L ~ _ _
K®u(r) M = i} Quiy M = oy = 47 = M,

and
ME. O

Homy(r)(K, M) = Homp (K, M)
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Following the computations done for Lie algebras in [24, Section 7.4] we
obtain that Hy(L,K) = Q(L)/Q(L)? and H'(L,K) = Homg(Q(L),K). In the
particular case of Example we see that

Hy (L, K) = ]_[K and  H'(Lp,K) = HK

These results show that the cohomology theory defined above is different from
the n-Lie algebra cohomology theories studied in [23], [I0] and [I] when n > 2.
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Chapter 9

A new characterisation of
groups amongst monoids

Abstract

We prove that a monoid M is a group if and only if, in the category of monoids, all
points over M are strong. This sharpens and greatly simplifies a result of Montoli,
Rodelo and Van der Linden [8] which characterises groups amongst monoids as the
protomodular objects.

Reference

X. Garcia-Martinez, A new characterisation of groups amongst monoids, Appl.
Categ. Structures 25 (2017), no. 4, 659-661.

In their article [8], Montoli, Rodelo and Van der Linden introduce, amongst
other things, the concept of a protomodular object in a finitely complete cat-
egory C as an object Y € C over which all points are stably strong. The aim
of their definition is two-fold: first of all, to provide a categorical-algebraic
characterisation of groups amongst monoids as the protomodular objects in
the category Mon of monoids; and secondly, to establish an object-wise ap-
proach to certain important conditions occurring in categorial algebra such as
protomodularity [2], 1] and the Mal’tsev axiom [5} [6].

207
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We briefly recall some basic definitions; see [3], [7, [§] for more details. Let
C be a finitely complete category, which we also take to be pointed for the
sake of simplicity. In C, a pair of arrows (r: W — X s: Y — X) is jointly
strongly epimorphic when if mr’ = r, ms’ = s for some given monomor-
phism m: M — X and arrows r': W — M, s’: Y — M, then m is an isomor-
phism. In the case of monoids, this means that any element z € X can be
written as a product r(w1)s(y1) - - - 7(wn)s(yn) for some w; € W, y; € Y. This
characterisation follows easily from the fact that (r, s) is a jointly strongly epi-
morphic pair in Mon if and only if the induced monoid morphism W + Y — X
is a surjection—see, for instance, [I, Corollary A.5.4 combined with Exam-
ple A.5.16]. Given an object Y in C, a point over Y is a pair of morphisms
(f: X ->Y,s: Y - X)such that fs = 1y. A point (f, s) is said to be strong
when the pair (ker(f): Ker(f) — X,s: Y — X) is jointly strongly epimorphic.
The point (f, s) is stably strong when all of its pullbacks are strong. More
precisely, if g: Z — Y is any morphism, then the pullback ¢*(f) together with
its splitting induced by s is a strong point.

Even though the concept of a protomodular object serves the intended
purpose of characterising groups amongst monoids, the proof of this charac-
terisation given in [8] is rather complicated, since it relies on another, more
subtle, characterisation in terms of the so-called Mal’tsev objects. The present
short note aims to improve the situation by giving a quick and direct proof
of a more general result: a monoid is a group as soon as all points over it are
strong.

Theorem 9.0.1. A monoid M is a group if and only if, in Mon, all points
over M are strong.

Proof. 1t is shown in [4]—this is Proposition 2.2.4 combined with
Lemma 2.1.6—that for any group M, all points over it are homogenous, which
makes them (stably) strong. So in particular, if M is a group, then all points
over M are strong. We prove the other implication.

Consider m € M and the induced split extension

L
0 K> Nt M<——M_— >0,
(m 1)

where m: N — M is the morphism which sends the generator 1 of (N, +,0) to
the element m of M. By the assumption that ((m 1as),car) is a strong point,
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1 € N can be written as
L =kimy---mikipyamipr - kpmy

for some k; € K and mj € M. Since 1 is not invertible in N, it must appear
in exactly one of the factors k; in the product on the right, say in k;;1. Then
neither kymy - - - m; nor m;y1 - - - kpmy, contains any non-zero elements of N, so
we have that in N + M

1=dkb

for some a’, b’ € M and k € K. Since 1 appears in k we can write k = alb where
a, b € M. Necessarily then ey; = a’a and ey = b/, because 1 = a’a -1 - bb'.
Furthermore, since k is in the kernel of (m 1,s), we also have that ey; = amb.
So, clearly, a and b are invertible. As a consequence, m is invertible as well.
We conclude that M is a group. O

Note that the above proof shows in particular why M is gregarious in
the sense of [I], which means that for any m there exist a and b such that
ey = amb. However, the proof also shows that those a and b are invertible,
and thus M is a group.

This result seems to indicate that in certain cases (like, for instance, in the
category of monoids) it makes sense to weaken the definition of a protomodular
object M—all points over M are stably strong—to the condition that those
points are strong. This, and related considerations, will be the subject of
future joint work with the authors of [§].
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Chapter 10

A note on split extensions of
bialgebras

Abstract
We prove a universal characterization of Hopf algebras among cocommutative bialge-
bras over an algebraically closed field: a cocommutative bialgebra is a Hopf algebra
precisely when every split extension over it admits a join decomposition. We also
explain why this result cannot be extended to a non-cocommutative setting.

Reference

X. Garcia-Martinez and T. Van der Linden, A note on split extensions of
bialgebras, preprint arXiv:1701.00665, 2017.

10.1 Introduction

An elementary result in the theory of modules says that in any short exact
sequence

f
OHK$X?YHO fos=1y

where the cokernel f admits a section s, the middle object X decomposes as
a direct sum X = K @Y. If, however, the given sequence is a short exact
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sequence of, say, groups or Lie algebras, then this is of course no longer true:
then we can at most deduce that X is a semidirect product K x Y of K and
Y. In a fundamental way, this interpretation depends on, or even amounts to,
the fact that X is generated by its subobjects k(K) and s(Y'). One may argue
that, in a non-additive setting, the join decomposition X = k(K) v s(Y) in
the lattice of subobjects of X is what replaces the direct sum decomposition,
valid for split extensions of modules.

When the given split extension is a sequence of cocommutative bialgebras
(over a commutative ring with unit K), we may ask ourselves the question
whether such a join decomposition of the middle object in the sequence always
exists. Although kernels are not as nice as one could expect [2], [3], it is not
difficult to see that if Y is a Hopf algebra then the answer is yes.

The main point of this note is that this happens only then, at least when K
is an algebraically closed field. We shall prove, in other words, the following
new universal characterization of cocommutative Hopf algebras among cocom-
mutative bialgebras over K:

All split extensions over a bialgebra Y admit a join decomposition
if and only if Y is a Hopf algebra.

This result is along the lines of, and is actually a variation on, a similar
characterization of groups among monoids, recently obtained in [I2] [7]. There
the authors show that all split extensions (of monoids) over a monoid Y admit
a join decomposition if and only if Y is a group.

In fact something stronger than the existence of a join decomposition may
be proved in a more general context; this will be the subject of Section
where we explore some basic aspects of split extensions of cocommutative bial-
gebras. In particular, we show that over a Hopf algebra, all split extensions
of cocommutative bialgebras admit a join decomposition (Corollary .
In Section [10.3] we focus on the other implication and prove that among co-
commutative bialgebras over an algebraically closed field, only Hopf algebras
admit join decompositions of their split extensions (Theorem . In the
final Section we explain why the constraint that the bialgebras in this
characterization are cocommutative is essential. As it turns out, in a non-
cocommutative setting, even the very weakest universal join decomposition
condition is too strong.
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10.2 Split extensions over Hopf algebras
A split extension in a pointed category with finite limits C is a diagram

K—tsx é Y
where k is a kernel and s is a section of f. So f os = 1y, but a priori we are
not asking that f is a cokernel of k, so that (k, f) is a short exact sequence,
and this is not automatically the case. We do always have that K and Y,
considered as subobjects of X, have a trivial intersection. Indeed, using that
k is the pullback of 0 — Y along f, it is easy to check that the pullback of k
and s is zero.

In this general context, a join of two subobjects may not always exist, but
the concept introduced in the next definition expresses what we want, and
agrees with the condition that X = k(K) v s(Y) whenever that expression
makes sense—as it does in any regular category with binary coproducts, for
instance [4].

Definition 10.2.1. A pair of arrows (k,s) with the same codomain X is
jointly extremally epimorphic when the arrows k and s cannot both factor
through one and the same proper subobject of X: whenever we have a diagram

AN

where m is a monomorphism, necessarily m is an isomorphism. We say that a
split extension as above is strong when (k, s) is a jointly extremally epimor-
phic pair; the couple (f,s) is then called a strong point. When we say that
a split extension admits a join decomposition, we mean that it is strong.

The given split extension is said to be stably strong (the couple (f, s) is a
stably strong point) when all of its pullbacks (along any morphism g: W —
Y') are strong. Following [12], we say that an object Y is protomodular when
all split extensions over Y are stably strong.

Remark 10.2.2. Tt is easily seen [12] that the split epimorphism f in a strong
point (f,s) is always the cokernel of its kernel k. This means, in particular,
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that all split extensions over a protomodular object Y, as well as all of their
pullbacks, are (split) short exact sequences which admit a join decomposition.

Remark 10.2.3. When all objects in C are protomodular, C is a protomodular
category in the sense of [5]. Next to Barr exactness, this is one of the key
ingredients in the definition of a semi-abelian category [9], and crucial for
results such as the 3 x 3 Lemma, the Snake Lemma, the Short Five Lemma [6),
4], or the existence of a Quillen model category structure for homotopy of
simplicial objects [I5]. Typical examples are the categories of groups, Lie
algebras, crossed modules, loops, associative algebras, etc. As recently shown
in [8, [10], also the category of cocommutative Hopf algebras over a field of
characteristic zero is semi-abelian.

Given a category with finite products C, we write Mon(C) for the cate-
gory of internal monoids, and Gp(C) for the category of internal groups in C.
For a commutative ring with unit K, we let CoAlgg ., denote the category
of cocommutative coalgebras over K. It is well known [I4] that there is an
equivalence between the category BiAlgy ., of cocommutative bialgebras over
K and Mon(CoAlgk .,.), which restricts to an equivalence between the category
Hopfk o of cocommutative Hopf algebras over K and Gp(CoAlg .,.). This is
easily seen using that in CoAlgy ., the product X x Y is X ® Y and 1 is K.

Theorem 10.2.4. Let C be a category with finite limits. If Y € Gp(C) then
all split extensions in Mon(C) over Y are stably strong. In other words, any
internal group in C is a protomodular object in Mon(C).

Proof. Consider in Mon(C) the commutative diagram

Ker (1) == Ker(f)
a I

M>—" sWxy X —2 s X

Wﬂf il

g

~

S

where the bottom right square is a pullback, m is a monomorphism, and Y
is an internal group. We shall see that m is an isomorphism. Since only
limits are considered, the whole commutative diagram is sent into a category
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of presheaves of sets by the Yoneda embedding, in such a way that the in-
ternal groups and internal monoids in it are mapped to ordinary groups and
monoids, respectively. Since the Yoneda embedding reflects isomorphisms,
it now suffices to give a proof in Set. There, it is easy to see that m is
an isomorphism, since every element (w,x) of W xy X can be written as
(1,2 - s(g(w)™Y)) - (w,sg(w)), where clearly the first element belongs to the
kernel of 71 and the second one comes from W. O

Corollary 10.2.5. Cocommutative Hopf algebras are protomodular in
BiAlgk coc- O

It follows that, over a Hopf algebra, split extensions of bialgebras are well-
behaved; not only are they short exact sequences, but it is also not hard to see
that the Split Short Five Lemma holds for them, so that equivalences classes
of split extensions may be considered as in ordinary group cohomology.

10.3 A universal characterization of cocommutative
Hopf algebras

The converse is less straightforward. In the case of groups and monoids (C =
Set in Theorem [10.2.4)), it was shown in [I2] (resp. in [7]) that all points in Mon
over Y are stably strong (resp. strong) if and only if Y is a group. However,
those proofs involve coproducts, and so a Yoneda embedding argument as in

Theorem [10.2.4] would not work.
We now let K be an algebraically closed field. We consider the adjoint pair

G
BiAlgk coc T~ Mon

K[-]

where the left adjoint K[—] is the monoid algebra functor and the right adjoint
G sends a bialgebra B (with comultiplication Ap and counit €p) to its monoid
of grouplike elements G(B) = {r € B | Ap(z) = x® x and ep(x) = 1}.

Lemma 10.3.1. K[—] preserves monomorphisms.

Proof. The functor K[—] sends any monoid monomorphism to a bialgebra
morphism of which the underlying vector space map is an injection. O
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Our aim is to prove that G preserves protomodular objects: then for any
protomodular bialgebra B, the monoid of grouplike elements G(B) is a group,
so that B is a Hopf algebra by |14} 8.0.1.c and 9.2.5].

Proposition 10.3.2. For any monoid M we have G(K[M]) = M. For any
bialgebra B, the counit ep: K[G(B)] — B of the adjunction at B is a split
monomorphism with retraction mg: B — K[G(B)], determined in a way which
is functorial in B.

Proof. The first statement follows immediately from the definition of K[M],
while the second depends on [14, 8.0.1.c and 8.1.2]. O

Since protomodular objects are closed under retracts [12], it follows that
if B is a protomodular bialgebra, then so is K[G(B)].

Proposition 10.3.3. The functor G preserves jointly extremally epimorphic
pairs.

Proof. Let (k,s) be a jointly extremally epimorphic pair in BiAlgk ... Then
the commutativity of the diagram

K[G (k)] K[G(s)]
_ < =

KIG(K)] KIG(X)] KIG(Y)]

o

K X Y
k S

obtained via Proposition and the fact that the upward pointing arrows
are split epimorphisms imply that the pair (K[G(k)],K[G(s)]) is jointly ex-
tremally epimorphic. Now suppose that m is a monomorphism making the
diagram on the left

M K[M]

N s

GE) 7 GX) 557 G0 KIGU)] o KIG(X)] = KIG(Y )]

commute. Applying K[—] we obtain the diagram on the right, in which K[m]
is a monomorphism by Lemma [10.3.1] Since, by the above, the bottom pair is
jointly extremally epimorphic, we see that K[m] is an isomorphism. But then
also m = G(K[m]) is an isomorphism, which proves our claim that (G(k), G(s))
is a jointly extremally epimorphic pair. O
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Proposition 10.3.4. If all split extensions over a bialgebra Y are strong,
then all split extensions over G(Y) are strong. In particular, G preserves
protomodular objects.

Proof. Consider a split extension
i f
K—X—G(Y)
S

over G(Y'). We apply the functor K[—], then take the kernel of K[ f] to obtain
the split extension of bialgebras

KL/
LS K[X] == K[G(Y)].
K[s]

From Proposition it follows that all split extensions over K[G(Y')] are
strong. Hence (I,K[s]) is a jointly extremally epimorphic pair. Applying the
functor GG, we regain the original split extension, since G is a right adjoint, thus
preserves kernels; but G also preserves jointly extremally epimorphic pairs by
Proposition so that the pair (k, s) is jointly extremally epimorphic. As
a consequence, all split extensions over the monoid G(Y') are strong, and G(Y)
is protomodular [7]. O

Theorem 10.3.5. If K is an algebraically closed field and Y is a cocommuta-
tive bialgebra over K, then the following conditions are equivalent:

(i) Y is a Hopf algebra;
(ii) in BiAlgy e, all split extensions over Y admit a join decomposition;
1t) Y is a protomodular object in BiAlg .

K,coc

Proof. (i) implies (iii) is Theorem and (ii) is obviously weaker than
(iii). For the proof that (ii) implies (i), suppose that all split extensions over
Y admit a join decomposition. Then Proposition [10.3.4] implies that in Mon
all split extensions over G(Y') are strong. Hence G(Y') is a group by the result
in [7], which makes Y a Hopf algebra by [14] 8.0.1.c and 9.2.5]. O

Remark 10.3.6. This implies that the category BiAlgk ., cannot be protomod-
ular: otherwise all bialgebras would be Hopf algebras. In particular, the Split
Short Five Lemma is not generally valid for bialgebras.
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10.4 On cocommutativity

In this final section we study what happens beyond the cocommutative setting.
Here K is a field.

All objects in the category of cocommutative K-bialgebras satisfy a cer-
tain weak join decomposition property: being a category of internal monoids
(in CoAlgy ...), the category BiAlgy .. is unital in the sense of [4]. Given an
object Y, it is said to be a unital object [12] when every split extension of
the type

TX Y
X==XxY_—Y
1x,0) 0.1y
is strong. Notice how this condition is symmetric in X and Y. So proto-
modular objects are always unital of course, but in fact this condition is weak
enough to be satisfied by all cocommutative bialgebras over K.

Let us now leave the cocommutative setting and ask ourselves what it
means for an object Y in BiAlgy to be unital—a very weak thing to ask, com-
pared with the condition that all split extensions over Y are (stably) strong.

Proposition 10.4.1. If Y is a unital object of BiAlgk, then for every object
X we have an isomorphism X xY 2= X QY.

Proof. Given any bialgebra X we may consider the diagram

X 1xQ®ey ex®ly, Ay
X<— XRQK=—T—=XQY——K®Y ——=Y.

~ ~

1x®ny nx®ly

We are first going to prove that the comparison morphism
m = <,0X (¢] (1x®€y),)\yo (€X®1y)>: X®Y —- X xY

is a monomorphism.

Note that it is almost never an injection; for instance, taking X =Y to
be a tensor algebra T'(V)) (with counit ey (v) = 0 for v € V) yields easy
counterexamples. However, in the category BiAlgyk, monomorphisms need not
be injective [13} 1].

Let h: Z - X ®Y be a morphism of bialgebras. We write

f=pxo(lx®ey)oh: Z > X and g=MAvo(ex®ly)oh: Z —Y.
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It suffices to prove that h = (f ® g) o Az as vector space maps for our claim
to hold. Indeed, if h and A’ induce the same f and g, then the given equality
of vector space maps proves that h = h'.
Since h is a coalgebra map, we have that Axgy oh = (h®h)oAz. Writing
Txy: X®Y — Y ®X for the twist map, we calculate:
(f®g)oAz
= (px®Ay)o(lx ®ey ®ex®1y)o (h®h) oAz
= (px @A) o(lx Rey ®ex ®ly)oAxgy oh
= (px®Ay)o(Ix ey ®ex®ly)o(lx @7xy ®ly)o (Ax ®Ay)oh
=(px®Ay)o(lx®ex ey ®1y) o (Ax ®Ay)oh
= (p (rx

x ®Ay) o ®)\;)oh=h.
It follows that m is a monomorphism. Moreover, m makes the diagram
X®Y
(I1x®ny)opy Im (Nx®1ly)oAy,

commute. The assumption that Y is unital tells us that m is an isomorphism.
O

This immediately implies that any unital object Y in BiAlgk has to
be cocommutative, since Ay:Y — Y ® Y is the morphism of bialgebras
{dy,1y): Y — Y x Y. In particular, the category BiAlgk is not unital, so it
cannot be protomodular, and not even Mal’tsev [4].

However, the situation is actually much worse, since it almost never hap-
pens that X ®Y is the product of X in Y in the category of all K-bialgebras—
not even when both X and Y are cocommutative. In fact, K itself cannot be
a protomodular object in BiAlgk, since this would imply that all objects of
BiAlgk are unital [I2]. As we have just seen, this is manifestly false.

The same holds for the category Hopfy of Hopf algebras over K. At first
this may seem to contradict results in [11] on split extensions of Hopf algebras.
We must keep in mind, though, that for a Hopf algebra H, the map {(1,0)
in the diagram

1 2
H<==<HxH_Z=—H
1w.,0) 0,1m)
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is the kernel of w9, but w9 need not be its cokernel, unless H is cocommutative.
Hence this diagram does not represent a short exact sequence, and so neither
Theorem 4.1 nor Theorem 4.2 in [I1] saying that H x H ~ H ® H applies.

We conclude that it makes no sense to study protomodular objects in
BiAlgyk or in Hopfk, and we thus restrict our attention to the cocommutative
case.
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Chapter 11

A characterisation of Lie
algebras amongst alternating
algebras

Abstract

Let K be an infinite field. We prove that if a variety of alternating K-algebras—
not necessarily associative, where xx = 0 is a law—is locally algebraically cartesian
closed, then it must be a variety of Lie algebras over K. In particular, Liek is the
largest such. Thus, for a given variety of alternating K-algebras, the Jacobi identity
becomes equivalent to a categorical condition: it is a law in V if and only if V is a
subvariety of a locally algebraically cartesian closed variety of alternating K-algebras.
This is based on a result saying that an algebraically coherent variety of alternating
K-algebras is either a variety of Lie algebras or a variety of antiassociative algebras
over K.

Reference

X. Garcia-Martinez and T. Van der Linden, A characterisation of Lie algebras
amongst alternating algebras, preprint arXiv:1701.05493, 2017.

11.1 Introduction

The aim of this article is to prove that, if a variety of alternating algebras—not
necessarily associative, where xx = 0 is a law—over an infinite field admits
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algebraic exponents in the sense of James Gray’s Ph.D. thesis [I5], so when
it is locally algebraically cartesian closed (or (LACC) for short, see [17, [7]),
then it must necessarily be a variety of Lie algebras. Since, as shown in [16],
the category Liek of Lie algebras over a commutative unitary ring K is always
(LACC), this condition may be used to characterise Lie algebras amongst
alternating algebras.

The only other non-abelian “natural” examples of locally algebraically car-
tesian closed semi-abelian [20] categories we currently know of happen to be
categories of group objects in a cartesian closed category [17], namely

1. the category Gp of groups itself;

2. the category XMod of crossed modules, which are the group objects in
the category Cat of small categories [22, [24]; and

3. the category Hopfy ., of cocommutative Hopf algebras over a field K of
characteristic zero [I4} [I0], the group objects in the category CoAlgk coc
of cocommutative coalgebras over K.

At first with our project we hoped to remedy this situation by finding fur-
ther examples of (LACC) categories of (not necessarily associative) algebras.
However, all of our attempts at constructing such new examples failed. Quite
unexpectedly, in the end we managed to prove that, at least when the field
K is infinite, amongst those algebras which are alternating, there are no other
examples: the condition (LACC) implies that the Jacobi identity holds. Thus,
in the context of alternating algebras, the Jacobi identity is characterised in
terms of a purely categorical condition. This is the subject of Section [11.2]

We do not know what happens when the algebras considered are not al-
ternating. The category of Leibniz algebras is not (LACC), so at least one
of the implications in our characterisation fails in that case. We make a few
additional observations in Section and hope to study this question in
future work.

11.1.1 Cartesian closedness

Algebraic exponentiation is a categorical-algebraic version of the concept of
exponentiation familiar from set theory, linear algebra, topology, etc. In its
most basic form, exponentiation amounts to the task of equipping the set
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Home¢(X,Y) of morphisms from X to Y with a suitable structure making it
an object YX in the category C at hand.

Depending on the given category C, this may or may not be always pos-
sible. A category with binary products C is said to be cartesian closed
when for every object X the functor X x (—): C — C admits a right adjoint
(—)X:C — C, so that for all Y and Z in C, the set Hom¢ (X x Z,Y) is isomor-
phic to Home(Z,YX). In particular then, an object YX exists for all X and
Y; see [24] for further details.

The category Set of sets is cartesian closed, with Y¥ the set Homse:(X,Y)
of functions from X to Y. Also the category Cat of small categories is car-
tesian closed. The category YX has functors X — Y as objects, and natural
transformations between them as morphisms. For any commutative ring K,
the category CoAlgy o of cocommutative coalgebras over K is cartesian closed
by a result in [I].

11.1.2 Closedness in general

The categories occurring in algebra are seldom cartesian closed. The concept
of closedness has thus been extended in several different directions. One option
is to replace the cartesian product by some other product, such as for instance
the tensor product ®k when C is the category Vectk of vector spaces over a
field K. In that case the result is the well-known tensor/hom adjunction, where
the object YX in the isomorphism Homk(X ®k Z,Y) = Homg(Z,Y ™) is the
set of K-linear maps Homg (X, Y) with the pointwise K-vector space structure.

11.1.3 An alternative approach

Another option, fruitful in non-abelian algebra, is to keep the cartesianness
aspect of the condition, but to make it algebraic in an entirely different way [15]
17,17). To do this, we first need to understand what is local cartesian closedness
by reformulating the condition in terms of slice categories. Here we follow
Section A1.5 of [21].

11.1.4 Local cartesian closedness

Let C be any category. Given an object B of C, we write (C | B) for the slice
category or category of objects over B in which an object x is an arrow
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z: X — Bin C, and a morphism f: z — y is a commutative triangle

in C, so that yof = .
Assuming now that C is finitely complete, given a morphism a: A — B,
we write

a*: (C| B)— (C| A

for the change-of-base functor which takes an arrow x: X — B in C and
sends it to its pullback a*(z) as in the diagram

Axp X ——>X

—
a*(m)l x
.A. ﬁ B-

If B is the terminal object 1 of C then (C | B) = (C | 1) = C. Any ob-
ject A of C now induces a unique morphism a =!4: A — 1, and the functor
":C— (C | A) sends an object Y to the product A x Y (considered together
with its projection to A). It is easily seen that the category C is cartesian
closed if and only if for every X in C, the functor % admits a right adjoint.
A category with finite limits C is said to be locally cartesian closed or
(LCC) when for every morphism a: A — B in C the change-of-base functor
a* has a right adjoint. Equivalently, all slice categories (C | B) are cartesian
closed—so that C is cartesian closed, locally over B, for all B in C. This
condition is stronger than cartesian closedness (the case B = 1); examples
include any Grothendieck topos, in particular the category of sets, while for
instance [12] the category Cat is not (LCC), even though it is cartesian closed.

11.1.5 Categories of points

We may now modify the concept of (local) cartesian closedness in such a way
that it applies to algebraic categories. The idea is that, where slice categories
are useful in non-algebraic settings, in algebraic categories a similar role may
be played by categories of points.



11.1 Introduction 227

Let C be any category. Given an object B of C, we write Ptg(C) for the
category of points over B in which an object (x, s) is a split epimorphism
x: X — B in C, together with a chosen section s: B — X, so that xos = 1p5.
Given two points (z: X — B,s: B— X) and (y: Y — B,t: B—Y) over B,
a morphism between them is an arrow f: X — Y in C satisfying yof = z and
fos =t.

Change of base is done as for slice categories: since sections are preserved,
given any morphism a: A — B in a finitely complete category C, we obtain a
functor

a*: Ptp(C) — Pta(C).

11.1.6 Protomodular and semi-abelian categories

A finitely complete category C is said to be Bourn protomodular [3| 5] 2]
when each of the change-of-base functors a*: Ptg(C) — Pt4(C) reflect isomor-
phisms. If C is a pointed category, then this condition may be reduced to
the special case where A is the zero object and a = jg: 0 — B is the unique
morphism. The pullback functor {};: Ptg(C) — C then sends a split epimor-
phism to its kernel. Hence, protomodularity means that the Split Short Five
Lemma holds: suppose that in the commutative diagram

KHXHB

NP

LﬁYHB

the morphism k is the kernel of x and [ is the kernel of y, while f is a mor-
phism of points (z,s) — (y,t); if now ¢ is an isomorphism, then f is also an
isomorphism.

A pointed protomodular category which is Barr exact and has finite co-
products is called a semi-abelian category [20]. This concept unifies earlier
attempts (including, for instance, [19,[13),28]) at providing a categorical frame-
work that extends the context of abelian categories to encompass non-additive
categories of algebraic structures such as groups, Lie algebras, loops, rings, etc.
In this setting, the basic lemmas of homological algebra—the 3 x 3 Lemma, the
Short Five Lemma, the Snake Lemma—nhold [5] 2], and may be used to study,
say, (co)homology, radical theory, or commutator theory for those non-additive
structures.
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In a semi-abelian category, any point (x,s) with its induced kernel k as
above gives rise to a split extension, since z is also the cokernel of k, so
that (k,x) is a short exact sequence. By the results in [§], split extensions
are equivalent to so-called internal actions by means of a semi-direct prod-
uct construction. Through this equivalence, there is a unique internal action
§: BYK — K such that X = K x¢ B. Without going into further details,
let us just mention here that the object BbK is the kernel of the morphism
(13 0): B+ K — B, that the functor Bb(—): C — C is part of a monad, and
that an internal B-action is an algebra for this monad. The category Ptp(C)
is monadic over C, and its equivalence with the category of Bb(—)-algebras
bears witness of this fact.

11.1.7 Examples

All Higgins varieties of Q-groups [1§] are semi-abelian, which means that any
pointed variety of universal algebras whose theory contains a group operation
is an example. In particular, we find categories of all kinds of (not neces-
sarily associative) algebras over a ring as examples, next to the categories
of groups, crossed modules, and groups of a certain nilpotency or solvability
class. Other examples include the categories of Heyting semilattices, loops,
compact Hausdorff groups and the dual of the category of pointed sets [20), 2].

11.1.8 Algebraic cartesian closedness and the condition

(LACC)

A category with finite limits C is said to be locally algebraically cartesian
closed or (LACC) when for every morphism a: A — B in C, the change-of-
base functor a*: Ptg(C) — Pt4(C) has a right adjoint [I5]. This condition is
much stronger than algebraic cartesian closedness or (ACC) which is the
case B = 1.

When a semi-abelian category is (locally) algebraically cartesian closed,
this has some interesting consequences [17, [7, 10]. For one thing, (ACC) is
equivalent to the condition that every monomorphism in C admits a centraliser.
The property (LACC) implies categorical-algebraic conditions such as peri-
abelianness [6], strong protomodularity [4], the Smith is Huq condition [25],
normality of Higgins commutators [11], and algebraic coherence. We come
back to the latter condition (which implies all the others mentioned) in detail,
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in Subsection I1.1.9] below.

The condition (ACC) is relatively weak, and has all Orzech categories of
interest [28] for examples. In comparison, (LACC) is very strong: as men-
tioned above, we have groups, Lie algebras, crossed modules, and cocommuta-
tive Hopf algebras over a field of characteristic zero as “natural” semi-abelian
examples, next to all abelian categories. An example of a slightly different
kind—Dbecause it is non-pointed—is any category of groupoids with a fixed
object of objects [7].

In what follows, we shall need the following characterisation of (LACC),
valid in semi-abelian varieties of universal algebras. Instead of checking that all
change-of-base functors a*: Ptg()V) — Pta(V) have a right adjoint, it suffices
to check that some change-of-base functors preserve binary sums.

Theorem 11.1.1. For a semi-abelian variety of universal algebras V, the
following are equivalent:

(i) V is locally algebraically cartesian closed;

1) for a in V, the pullback functor in: Ptp — V preserves all colim-
forall B in 'V, th llback fi in: Pte(V V Il col
its;

(iii) for all B in'V, the functor |5 preserves binary sums;

(iv) the canonical comparison (Bbux Bbiy): BbX + BbY — Bb(X +Y) is an
isomorphism for all B, X andY in V.

Proof. This combines Theorem 2.9, Theorem 5.1 and Proposition 6.1 in [I7].
O

Via the equivalence between split extensions and internal actions, condition
(ii) means that the forgetful functor from the category of B-actions in V to
V preserves all colimits. Hence in this varietal context, (LACC) amounts
to the property that colimits in the category of internal B-actions in V are
independent of the acting object B, and computed in the base category V.

11.1.9 Algebraic coherence

The concept of an algebraically coherent category was introduced in [10]
with the aim in mind of having a condition with strong categorical-algebraic
consequences such as the ones mentioned above for (LACC), while at the same
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time keeping all Orzech categories of interest as examples. It is to coherence
in the sense of topos theory [21}, Section A1.4] what algebraic cartesian closed-
ness is to cartesian closedness: a condition involving slice categories has been
replaced by a condition in terms of categories of points.

The formal definition is that all change-of-base functors
a*: Ptg(C) — Pta(C) preserve jointly strongly epimorphic pairs of ar-
rows. This is clearly weaker than asking that the a* preserve all colimits.
We shall only need the following characterisation, which is essentially
Theorem 3.18 in [I0]: algebraic coherence is equivalent to the condition that
for all B, X and Y, the canonical comparison

(Boux Bbuy): BbX + BYY — By(X +Y)

from Theorem [11.1.1]is a regular epimorphism.

Algebraic coherence has somewhat better stability properties than
(LACCQC). For instance, any subvariety of a semi-abelian algebraically coherent
variety is still algebraically coherent. We shall come back to this in the next
section.

Some examples of semi-abelian varieties which are not algebraically co-
herent are the varieties of loops, Heyting semilattices, and non-associative
algebras (the category Algy defined below).

11.2 Main result

The aim of this section is to prove Theorem [I1.2.9, which says that any
(LACCQC) variety of alternating algebras over an infinite field K is a category of
Lie algebras over K. On the way we fully characterise algebraically coherent
varieties of alternating algebras (Theorem . This is an application of
a more general result telling us that a variety of K-algebras is algebraically
coherent if and only if it is an Orzech category of interest (Theorem .

11.2.1 Categories of algebras and their subvarieties

Let K be a field. A (non-associative) algebra A over K is a K-vector
space equipped with a bilinear operation [—, —]: A x A — A, so a linear map
A® A — A. We use the notations [z,y] = z -y = zy depending on the
situation at hand, always keeping in mind that the multiplication need not be
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associative. We write Algy for the category of algebras over K with product-
preserving linear maps between them. It is a semi-abelian category which is
not algebraically coherent. A subvariety of Algy is any equationally defined
class of algebras, considered as a full subcategory V of Algy.

The category of associative algebras over K is the subvariety of Algk
satisfying z(yz) = (xy)z.

The category Altk of alternating algebras over K is the subvariety of Algk
satisfying xz = 0. It is easily seen that those algebras are anticommutative,
which means that zy = —yz holds. If the characteristic of the field K is
different from 2, then the two classes coincide.

The category AAAlgy of antiassociative algebras over K is the subvariety
of Algk satisfying z(yz) = —(zy)z. We write AAAAlgy for the category of
alternating antiassociative algebras over K.

The category Liek of Lie algebras over K is the subvariety of alternating
algebras satisfying the Jacobi identity z(yz) + z(xy) + y(zz) = 0.

An algebra is abelian when it satisfies xy = 0. The subvariety of Algy
determined by the abelian algebras is isomorphic to the category Vectk of
vector spaces over K. An algebra A is abelian if and only if +: A x A — A is
an algebra morphism, which makes (A, +,0) an internal abelian group, so an
abelian object in the sense of [2].

11.2.2 Algebras over infinite fields

We assume that the field K is infinite, so that we can use the following result
(Theorem which is Corollary 2 on page 8 of [29]). We first fix some
terminology. For a given set S, a polynomial with variables in S'is an element
of the free K-algebra on S. Recall that the left adjoint Set — Algy factors as a
composite of the free magma functor M : Set — Mag with the magma algebra
functor K[—]: Mag — Algk. The elements of M (S) are non-associative words
in the alphabet S, and the elements of K[M (.S)], the polynomials, are K-linear
combinations of such words. A monomial in K[M (S)] is any scalar multiple
of an element of M (S). The type of a monomial ¢(x1,...,xz,) is the element
(k1,...,kn) € N™ where k; is the degree of x; in ¢(z1,...,2,). A polynomial
is homogeneous if its monomials are all of the same type. Any polynomial
may thus be written as a sum of homogeneous polynomials, which are called
its homogeneous components.
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Theorem 11.2.1. [29] If V is a variety of algebras over an infinite field,
then all of its laws are of the form ¢(z1,...,x,) = 0, where ¢(z1,...,Ty)
is a (non-associative) polynomial, each of whose homogeneous components
(X, ...y x,) again gives rise to a law Y (x,, ..., x;,) =0 in V. O

11.2.3 Description of BbX in Algy

Let B and X be free K-algebras. Then the object Bb X, being the kernel of the
morphism (1p 0): B + X — B, consists of those polynomials with variables
in B and in X which can be written in a form where all of their monomials
contain variables in X. For instance, given b, b’ € B and x € X, the expression
(b(zx))b is allowed, but b or V' are not.

11.2.4 The reflection to a subvariety V of Algy

Let B and X be free K-algebras. We write B and X for their respective reflec-
tions into V, which are free V-algebras. These induce short exact sequences in
Algk such as

0 [X] XX 0

where nx is the unit at X of the reflection from Altk to V. We never write the
right adjoint inclusion, but note that it preserves all limits. The kernel [X]
is a kind of relative commutator; all of its elements are laws of V. Reflecting
sums now, then taking kernels to the left, we obtain horizontal split exact
sequences

0—— (BVX)n[B+ X]|—[B+ X]|=—=[B]——>0

v \L (130] \L

0 BbX B+X=—/—B— >0

PB,X nB-}—XJ/ J/WB
_vV_ _ _ (g0 ¥
0————BwWwX———>B+y, X——=>B——>0

in Algk, where the sum B+y X =~ B + X is taken in V. Using, for instance, the
3 x 3 Lemma, it is not difficult to see that the induced dotted arrow pp x is a
surjective algebra homomorphism. In fact, the upper left square is a pullback,
and we have three vertical short exact sequences. The one on the left allows
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us to view the elements of Bby, X as polynomials in BbX, modulo those laws
which hold in V that are expressible in BbX. These laws are precisely the
elements of the top left intersection. We freely use this interpretation in what
follows, abusing terminology and notation by making no distinction between
the equivalence class of polynomials that is an element in the quotient Bby, X,
and an element in BbX which represents it.

11.2.5 Subvarieties of Liex need not be (LACC)

Subvarieties of locally algebraically cartesian closed categories need no longer
be such: we may take the variety of Lie algebras that satisfy z(yz) = 0 as an
example.

Proposition 11.2.2. Let V be a variety of non-associative algebras in which
x(yz) = 0 is a law. IfV is locally algebraically cartesian closed, then it is
abelian.

Proof. Let B, X and Y be free algebras in V, respectively generated by their
elements b, x and y. Then the split epimorphisms

(1p0): B+ X - B, i1p:B—> B+ X)

and
(1p0): B+Y —- B, 1p: B—>B+Y)

correspond to the free B-actions respectively generated by x and y. Their sum
in Pt B(V) is

(1p00): B+X+Y —>B, 1pg:B—>B+X+Y).
Applying the kernel functor, (LACC) tells us that the canonical morphism

(Bbux Bbiy): BbX + BYY — Bh(X +Y)

is an isomorphism (Theorem . When considering the sum Bb X + BHY
as a subobject of the coproduct B+ X + B+ Y, we write by and by for the
generators of the two distinct copies of B; then (Bbux Bbty) maps the b; to b,
sends x to x and y to y.

Now x € BbX and yby € BbY are such that z - ybs is sent to zero by the
above isomorphism, since the law z(yz) = 0 holds in V. As a consequence,
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x-ybs is zero in the sum BbX + BbY. Recall that by ¢ BHY', so that yby cannot
be decomposed as a product of y and bs in BbY. By Theorem yba can
also not be written as a product in which more than one y or by appears,
unless yby is zero in BbY. As a consequence, x - yby can only be zero if either
yby is zero in BbY', or xz = 0 is a law in V. In the former case, ybs is zero in
the sum B + Y, which is a free algebra on {be,y}; then yz = 0 is a law in V.
In either case, V is abelian. O

11.2.6 (Anti)associative algebras

Essentially the same argument gives us two further examples, which we shall
need later on:

Proposition 11.2.3. If a variety of either associative or antiassociative al-
gebras is locally algebraically cartesian closed, then it is abelian.

Proof. In the antiassociative case we have x, —xb; € BbX and boy, y € BOY
such that x - bey and —xb; - y are sent to the same element in Bb(X +Y) by
the above isomorphism (Bbitx Bbiy): BbX + BbY — Bb(X +Y).

Similarly, in the associative case, we see that xb; - y and x - byy are two
distinct elements of the sum BbX + BbY which the morphism (Bbux Bbuy)
sends to one and the same element of Bb(X +Y). O

Lemma 11.2.4. Any variety of K-algebras that satisfies the law z(xy) = 0 is
a subvariety of AAAIgk.

Proof. Taking x = a + b and y = ¢ gives us
0= (a+b)((a+0b)c) = alac) + bac) + a(be) + b(bc) = b(ac) + a(be)
so that a(bc) = —b(ac). It follows that (uv)w = —w(uwv) = u(wv) = —u(vw)

is a law in V, and V is a variety of antiassociative algebras. O

11.2.7 Algebraic coherence

Theorem [11.2.1| gives us a characterisation of algebraic coherence for varieties
of K-algebras.

Theorem 11.2.5. Let K be an infinite field. If V is a variety of non-
associative K-algebras, then the following are equivalent:
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(i) V is algebraically coherent;

(ii) there exist \1, ..., A in K such that

z(wy) = My(zz) + Aow(yz) + Asy(z2) + Mz (zy)
+ As(zx)y + A6 (y2)x + Ar(x2)y + As(zy)x

(ry)z = Aoy(2x) + A1ox(y2) + A11y(z2) + A22(2y)
+ AMi3(z2)y + Ma(yz)r + Ais(22)y + Ms(2y)x

are laws in V;
(7ii) V is an Orzech category of interest [28].

Proof. From the results of [10] we already know that (iii) implies (i). It follows
immediately from the definition of an Orzech category of interest that (ii)
implies (iii). To see that (i) implies (ii), we take free B-actions as in the first
part of the proof of Proposition [11.2.2] and obtain the regular epimorphism

(Bbux Bbiy): BbX + BYY — Bh(X +Y).

Any element b(zy) of Bb(X +Y') is the image through this morphism of some
polynomial (b1, z,bs,y) in BbX + BbY. Note that this polynomial cannot
contain any monomials obtained as a product of a b; with zy or yz. This
allows us to write, in the sum B + X + Y, the element b(zy) as

Ay(bz) + Aoz (yb) + A3y (xd) + Az (by) + As5(bz)y + Ae(yb)x
+ Ar(xb)y + Ag(by)x + vo(b, z,y)

for some Ap, ..., Ag, v € K, where ¢(b, x,y) is the part of the polynomial in b,
x and y which is not in the homogeneous component of b(zy). Since B+ X +Y
is the free V-algebra on three generators b, x and y, from Theorem [T1.2.1] we
deduce that the first equation in (ii) is again a law in V. Analogously for (xy)b
we deduce the second equation in (ii). O

Remark 11.2.6. This result may be used to prove the claim made in [10] that
the category of Jordan algebras—commutative and such that (zy)(zz) =
x(y(xx))—is not algebraically coherent. Indeed, as explained in [27], it is not
a category of interest.
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In the case of alternating algebras, this characterisation becomes more
precise:

Theorem 11.2.7. Let K be an infinite field. If V is a subvariety of Altk, then
the following are equivalent:

(i) V is algebraically coherent;
(ii) V is a subvariety of either AAAlgy or Liek.

Proof. (ii) implies (i) since AAAAlgx and Liex are Orzech categories of inter-
est [28], so their subvarieties are algebraically coherent. To see that (i) implies
(ii), we first use anticommutativity to simplify the law given in Theorem
to

z2(zy) = Ay(zz) + pa(yz)

for some A and p in K. Choosing, in turn, y = z and = = z, we see that
1. either A\=—1or z-zx =0isalaw in V, and
2. either y = —l or x-zy = 0is a law in V.

In any of the latter cases, V is a variety of antiassociative algebras by
Lemma which makes it abelian (Proposition [11.2.3)). We are left with
the situation when A = p = —1, which means that the Jacobi identity is a law
in V, so that V a variety of Lie algebras. O

Example 11.2.8. The variety of alternating associative algebras is an exam-
ple. We have that 0 = z(yy) = (xy)y is a law, so that by Lemma those
algebras are antiassociative as well. It follows that zyz = 0 is a law. We
regain a variety as in Proposition [11.2.2] so since it is not abelian, it cannot
be (LACC).

11.2.8 A characterisation of Lie algebras amongst alternating
algebras

The condition (LACC) eliminates one of the two options in Theorem |11.2.7

Theorem 11.2.9. Let K be an infinite field. If V is a locally algebraically car-
tesian closed variety of alternating K-algebras, then it is a subvariety of Lieg.
In other words, Liek is the largest (LACC) wariety of alternating K-algebras.
Thus for any variety V of alternating K-algebras, the following are equivalent:
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(i) V is a subvariety of a (LACC) variety of alternating K-algebras;

(ii) the Jacobi identity is a law in V.
Proof. This combines Theorem with Proposition [11.2.3 O
Remark 11.2.10. By Proposition the condition

(iii) V is (LACC)

is strictly stronger than the equivalent conditions (i) and (ii).

Remark 11.2.11. We do not know any non-abelian examples of (LACC) sub-
varieties of Liek, or whether such subvarieties even exist.

11.3 Non-alternating algebras

An important question which we have to leave open for now, is what happens
when the algebras we consider are not alternating. We end this note with
some of our preliminary findings.

Some of the results and techniques used in the previous section are valid
for non-alternating algebras of course. For instance, Proposition Prop-
osition [1.2.3] and Theorem [11.2.5] are.

Proposition [11.2.2] contradicts—in spirit only, since we are working over a
field—Proposition 6.9 in [I7], which claims that the category of all commu-
tative non-unitary rings satisfying xyz = 0 is locally algebraically cartesian
closed. It turns out that the argument given in Proposition [11.2.2] is still
valid in this case, and shows that the variety under consideration, should it
be (LACC), would be abelian—which is false.

We noticed that the functor R constructed in the proof of [I7, Proposi-
tion 6.9] is not well defined on morphisms. Let us give a concrete example
showing this in detail. We follow the notations from [I7], Proposition 6.9]. Let
B = (b) = Z[b] act on the commutative ring

X = y|az =2y =yy=0)=Z[z,y]/(zz, 2y, yy)
by bz = y and by = 0. Consider

M ={m,p,q| mp=q, mqg=pg=mm=pp=gqq=0)
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with the trivial B-action, and let g: X — M be the ring homomorphism
sending x and y to m. Let f € R(X) be defined by f(n,b) = nx + bx. Then

R(g)(f)(0,0) - p = (gof)(0,b) - p=g(y) -n=mp=q+#0,

which shows that R(g)(f) is not an element of R(M).

11.3.1 Leibniz algebras

The category Leibk of (right) Leibniz algebras [23] over K is the subvariety
of Algy satisfying the (right) Leibniz identity (zy)z = z(yz) + (xz)y. This
law is clearly equivalent to the Jacobi identity when the algebras are alterna-
ting, so that a Lie algebra is the same thing as an alternating Leibniz algebra.
However, examples of non-alternating Leibniz algebras exist. Analogously, we
can consider the category of (left) Leibniz algebras, with corresponding
identity x(yz) = (zy)z + y(rz). Both categories are of course equivalent.

We do not know whether Theorem extends to the non-alternating
case. What is certain, though, is that the category of Leibniz algebras is not
locally algebraically cartesian closed. Indeed, using the notations of Proposi-
tion the Leibniz identity allows us to deduce
{( )b = a(yb) + (xb)y

(

xy)b
zy)b = —z(by) + (xb)y
so that x - yb = —x - by in B + X + Y. This means that = - ybo and —x - boy
are two distinct elements of BbX + BbY which are sent to the same element
of Bb(X +Y') by the morphism (Bbex Bbiy). Hence this morphism cannot be
an isomorphism, and Leibk is not (LACC).

We may ask ourselves what happens in the “intersection” between right
and left Leibniz algebras. They are called symmetric Leibniz algebras and,
as shown in [26], the chain of inclusions Liex € SLeibk < Leiby is strict. Doing

a rearrangement of terms as in

b(zy) = (bx)y + z(by) = b(zy) + (by)x + x(by),

we see that (by)x + z(by) = 0. From this we may conclude that, in order to be
(LACC), a variety of symmetric Leibniz algebras must either be alternating
or abelian. We thus regain the known cases of Lie algebras and vector spaces.
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11.3.2 Free algebra on one generator

A variety of algebras is alternating precisely when the free algebra on a single
generator is abelian: xx = 0 is a law in the variety, if and only if the bracket
vanishes on the algebra freely generated by {z}. This corresponds to the
condition that the free algebra on a single generator admits an internal abelian
group structure. This condition makes sense in arbitrary semi-abelian varieties,
and we may ask ourselves whether perhaps it is implied by (LACC), as in the
case of symmetric Leibniz algebras. This would allow us to drop the condition
that V is alternating in Theorem

The example of crossed modules proves that this is false. In [9] it is shown
that on the one hand, a crossed module ¢: T'— G with action £ admits an
internal abelian group structure if and only if the groups 7" and G are abelian
and the action ¢ is trivial. On the other hand, the free crossed module on
a single generator is the inclusion kz z: ZbZ — Z + Z, equipped with the
conjugation action. We see that in this case the free object on one generator
is not abelian, even though XMod is a locally algebraically cartesian closed
semi-abelian variety. However, it is not a variety of non-associative algebras
of course.

Perhaps this is not the right conceptualisation, and we must think of other
ways of making the law zx = 0 categorical. The question then becomes
whether (LACC), or any other appropriate categorical-algebraic condition,
would imply this new characterisation.
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Chapter 12

Future research

At the moment of writing this dissertation, several ongoing joint projects are
being worked on. One such with José Manuel Casas and Tim Van der Linden
is to study low-dimensional homology of multiplicative Hom-Lie algebras [7].
This category is of special interest since, even though it has some good alge-
braic behaviour, it is an example of semi-abelian category where the Smith is
Hugq condition [10], normality of Higgins commautators [2] or even the universal
central extension condition [I] do not hold.

A joint project with Rafael Fernandez-Casado is to generalise the notion of
actor of crossed modules of Leibniz algebras to the dialgebras setting [8]. The
aim is to extend Chapter [6] to complete the square-shaped diagram formed by
associative algebras, Lie algebras, dialgebras and Leibniz algebras:

XU
XAs < 1 XLie

XLieps

XAs || i || XLierp

XLb
XDial T XLb

XUq

Note that the first two cases were studied in my coauthor’s Ph.D. thesis [4].
An other ongoing project with James Gray is to prove that all categories of

Lie objects over an abelian, cocomplete, symmetric, closed, monoidal category

are (LACC) [5], generalizing his proof in the case of R-modules [6]. This
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result is interesting since it will add some examples to the short list of known
(LACC) categories, as Lie superalgebras or differential graded Lie algebras.
Moreover, it will automatically imply that Lie algebras in the Loday-Pirashuvili
category [9] are (LACC). Thus we regain the non-(LACC) category of Leibniz
algebras as a full reflective subcategory of a (LACC) one.

Of the lines of work that can emerge from this thesis, maybe the most
ambitious one is to extend Chapter [II] The obvious question is what happens
if we consider all non-associative algebras instead of alternating ones. The
author believes that the characterisation is still valid, but no proof has been
found yet. In any case, a negative solution, i.e. a counterexample, would also
be a very meaningful and surprising result.

In Chapter some questions are left open. Since (BiAlgg )P =~
Mon ((Algg .)°P) and (Hopfy )P ~ Gp((Algk .)°?), Theorem implies
that the category of commutative Hopf algebras is coprotomodular. Neverthe-
less, it is not known if it is an example of a co-semi-abelian category.

A group G is called capable if there exists another group @ such that
G = Q/Z(Q). In [3] it was proven that a group is capable if and only if the
exterior centre Z"(G) = {he G | h n g =1 for all g e G} is trivial. This was
extended to Lie algebras in [11] and it is interesting to see if it is still true in
the Leibniz algebras case, since in Chapter [5] the non-abelian exterior product
of Leibniz algebras was introduced.
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Resumo da Tese de doutoramento (in Galician)

Categorical-algebraic methods in non-commutative and non-

associative algebra

Resumo abreviado:
Métodos categoérico-alxébricos en alxebra non asociativa e non conmutativa

Esta tese ten un dobre obxectivo: o primeiro é empregar métodos categéricos
e alxébricos para estudar propiedades homoléxicas dalgunhas estruturas alxébricas
variantes de Lie ou Leibniz, e o segundo consiste en empregar métodos categoricos e
alxébricos para estudar e caracterizar certas cofiecidas estruturas. Por unha parte,
estidase a teoria de extensions centrais universais e o produto tensor non abeliano,
calcilanse explicitamente algiuns grupos de homoloxia, e resélvense tamén problemas
sobre alxebras envolventes universais e acciéns. Por outra parte, centrarémonos en
dar caracterizaciéns categoricas de certas estruturas alxébricas, como caracterizar a
categoria de grupos dentro da categoria de monoides, a categoria de alxebras de Hopf
dentro das bidlxebras coconmutativas ou a categoria de alxebras de Lie dentro das
alxebras non asociativas alternadas.

Dende que nos anos 50 se definiron as categorias abelianas como unha abs-
traccién categorica das propiedades dos grupos abelianos e médulos, tratouse
de atopar un marco similar que sexa capaz de abstraer as propiedades das
categorfas de grupos (non necesariamente abelianos), aneis ou dlxebras.

Houbo varios intentos de conseguir este nivel de abstracciéon ao longo dos
anos: salientando os esforzos de Higgins [26], Huq [28] ou R.-Grandjedn [35],
pédese consultar en [29] unha lista mais ampla. Xa que ningin destes
intentos foi plenamente satisfactorio e as conexiéns entre eles non esta-
ban moi claras, non se estudaron con moita intensidade e nin sequera
se lles deu un nome. En 1999, Janelidze, Marki e Tholen decataronse
de que a propiedade de Barr-ezactitude [3] xunto co concepto de Bourn-
protomodularidade [5] proporcionan un contexto que simplifica e unifica os
“antigos” sistemas de axiomas mencionados previamente; e a través de-
les, pédense explorar facilmente as relaciéns coa alxebra categérica mod-
erna.
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Expresada nos termos dos axiomas “novos”, unha categoria semi-abeliana
¢é unha categoria punteada que é Barr-ezacta e Bourn-protomodular con sumas
finitas. En particular, podemos atopar moitas das estruturas alxébricas non
asociativas e non conmutativas estudadas na literatura [4], incluindo aquelas
cunha estrutura de grupo subxacente. Precisamente, calquera variedade de
alxebras que ten entre as stias operaciéns e identidades as de teoria de grupos,
é semi-abeliana.

Unha das vantaxes deste marco categérico é que permite un estudo unifi-
cado de moitas propiedades homoléxicas. Por exemplo, nunha categoria semi-
abeliana cimprense os lemas diagramaéticos clésicos (o Lema corto escindido
dos cinco, o Lema 3 x 3, o Lema da serpente, os Teoremas de Isomorfia de
Noether). Como se pode ver en [37], a teorfa das categorias semi-abelianas esta
perfectamente equipada para o estudo da (co)homoloxia non abeliana e a corre-
spondente teoria de homotopia, unificando moitos aspectos basicos das teorias
de (co)homoloxia clasicas de grupos, dlxebras de Lie e médulos cruzados.

Dende un punto de vista alxébrico, a teoria de cohomoloxia de alxebras
de Lie foi definida en [I1], tratando de dar una construcién alxébrica da co-
homoloxia de espazos topoloxicos de grupos de Lie compactos. Esta teoria
estudouse ao longo dos anos e estendeuse a moitas estruturas como modu-
los cruzados de dlzebras de Lie [8, [T], superdlrebras de Lie [33], dlrebras de
Lie-Rinehart [27, B36], (super)dlzebras de Leibniz [30], n-dlzebras de Lie [1],
n-dlzebras de Leibniz [9], etc.

A teoria de dlxebras non asociativas estd fortemente relacionada con areas
das matemaéticas moi diferentes e ten moitas aplicaciéns en fisica, mecanica,
bioloxia e outras ciencias. Como insignias de &lxebras non asociativas,
atopamos as alxebras de Lie e de Jordan, que tiveron unha relevancia enorme
durante o decurso do século pasado. O estudo das alxebras non asociativas
engloba a teorfa de R-dlxebras non necesariamente asociativas (sendo as alxe-
bras asociativas un caso especial moi importante), onde R pode ser un anel
ou un corpo. Os problemas que se abordan son variados, como por exemplo o
estudo de solubilidade ou nilpotencia, clasificacions, caracterizacions, relaciéns
coa xeometria diferencial, etc.

O obxectivo desta tese é dobre: o primeiro é empregar métodos categoricos-
alxébricos para estudar propiedades homoléxicas dalgunhas das estruturas
non asociativas, semi-abelianas, xa mencionadas; o segundo é usar méto-
dos categérico-alxébricos para estudar propiedades categéricas e dar carac-
terizacions categoricas dalgunhas conecidas estruturas alxébricas.
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Por unha parte, estudaranse as extensiéns centrais universais xunto co
produto tensor non abeliano, e empregaranse para calcular explicitamente
algtins grupos de homoloxia [10, 13}, 19, 2], 20], e resolveranse algins prob-
lemas sobre alxebras envolventes universais e accions [16, 17, 6, 22]. Por
outra banda, centrarémonos en dar caracterizaciéns categéricas dalgunhas es-
truturas alxébricas, como unha caracterizacién da categoria de grupos dentro
dos monoides [I§], de dlxebras de Hopf coconmutativas dentro das bidlxebras
coconmutativas [24] e das dlxebras de Lie dentro das élxebras alternadas [23].

A continuacién darase unha explicacién detallada de cada un dos capitulos,
e salientdndose en cada un os resultados mais importantes. No Capitulo
estidase as extensions centrais universais na categoria de alxebras de Lie-
Rinehart, dando unha descricién alxébrica. Tamén se estuda o levantamento
de automorfismos e derivaciéns de extensiéns centrais. Despois, seguindo o
modelo de Ellis de produto tensor non abeliano [I5], ddse unha definicién do
produto tensor non abeliano de alxebras de Lie-Rinehart, relacionandoo coas
extensions centrais universais.

Teorema [1.3.11} Sexa L unha dlrebra de Lie-Rinehart perfecta. Enton
Keru — ucepa L — L,

¢ una extension central universal de L. Ademais, se L non ten centro, entén
Keru = Za(ucepal).

Proposicion Dada unha dlxebra de Lie-Rinehart perfecta L, o produto
tensor non abeliano L& L € a extension central universal de L, onde a quasi-
accion de L sobre si mesmo € o corchete de Lie.

No Capitulo [2|dase unha definicién do produto tensor non abeliano no caso
de superalxebras de Lie, estudando diversas propiedades e emprégase para o
estudo de extensiéns centrais universais. Preséntase unha definicién da ho-
moloxia non abeliana de dimensiéns baixas e relaciénase coa homoloxia ciclica
de superdlxebras. Para rematar, definese un produto exterior non abeliano
probando un analogo do teorema de Miller, una férmula de Hopf e unha suce-
sién exacta de seis termos na homoloxia de superalxebras.

Teorema Sexa A unha superdlrebra asociativa con unidade. Enton
existe una sucesion exacta de supermodulos:
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A @ HCL(A) — Ha (A, V(A)) — Hi(A[A, A])

[u
HC;(A) ——— HCM(4) 4. 4] 0.

[A,[A, A]]

Teorema Sexa M un ideal graduado dunha superdlzebra de Lie P.
Enton existe una sucesion exacta

Ker(PAM — P) — Hy(P) —» Ho(P/M) — [PJWJW] — Hy(P) - Hy(P/M) — 0.

No Capitulo atépase a extension central universal das superalxe-
bras de matrices sl(m,n,A) onde A é unha superdlxebra asociativa e
m + n = 3,4, relaciondndoa coa superdlxebra de Steinberg st(m,n,A).
Calctilanse Ho (sl(m,n, A)) e Hy (5t(m,n, A)), e para rematar, introdicese
un novo método usando o produto tensor non abeliano de superalxebras
de Lie (definido no capitulo anterior) para atopar unha conexién entre
Ho (5[(m, n, A)) e a homoloxia ciclica de superdlxebras asociativas cando
m+n = 3.

Teorema [3.8.1l Sexa K un anel conmutativo con unidade e A unha K-
superdlzebra asociativa con unidade. Enton,

0 form4+n=5o0rm=2n=1,
A form=3,n=0,
Hy (5t(m,n,A)) =< AS form=4,n=0,

(A2)8  form=3n=1,
\A%@A% form=2,n=2,

onde Ay, € o cociente de A polo ideal mA + A[A, A] (Definicion[3.2.5) e I é

o funtor cambio de paridade.

Teorema [3.8.2l Sexa K wun anel conmutativo con unidade e A unha
K -superdlxebra asociativa con unidade con unha K-base que contena a

250



unidade. Enton,

(HC1(A) form+n=5o0rm=2n=1,
HC(A) ® A§ form =3,n=0,

Hy (sl(m,n, A)) = { HC(A4) @ A form=4,n=0,
HC1(A) @TI(A2)8  form =3,n=1,
(HC1(A) @ AY@® A3 form =2,n =2,

onde Ay, € o cociente de A polo ideal mA + A[A, A] (Definicion[3.2.5) e I1 é
o funtor cambio de paridade.

Seguindo as lifias do capitulo anterior, no Capitulo [ complétase o pro-
blema de atopar a extensién central universal na categoria de superalxebras
de Leibniz das superdlxebras de matrices sl(m,n, D) cando m +n > 3 e D
é unha superdialxebra, resolvendo o problema particular de cando se trata
dunha alxebra asociativa, superalxebra ou didlxebra. Para completar esta
tarefa, empregamos un método orixinal distinto do habitual que se pode atopar
na literatura. Tamén se introduce o cadrado tensor non abeliano de dlxebras
de Leibniz para estudar as sias relaciéns coa extensiéon central universal.

Teorema [4.6.1l Sexa R un anel conmutativo con unidade e D unha R-
superdidlrebra asociativa con unidade e unha R-base que contena a bar-
unidade. Enton,

(HHS;(D) form+n=5o0rm=2mn=1,
HHS; (D) ® D§ form =3n=0,
HL; (sl(m,n, D)) = < HHS; (D) @ DS form =4,n =0,
HHS; (D) ®TI(D3)8  form=3,n=1,
|(HHS (D) ® D3 @® D3 form =2,n =2,

onde Dy, e o resultado de cocientar D polo ideal mD + ([D, D] 4 D) (Defini-
cio’n e Il € o funtor cambio de paridade.

Teorema [4.6.2. Sexa R un anel conmutativo con unidade e D unha R-
superdidlrebra asociativa con unidade e unha R-base que contena a bar-
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unidade. Enton,

0 form+n=5o0rm=2n=1,
DS form=3,n=0,
HL; (sti(m,n, D)) = { D§ form =4,n=0,

(D2)®  form=3n=1,
Di®DE  form=2,n=2,

onde Dy, e o resultado de cocientar D polo ideal mD + ([D, D] 4 D) (Defini-
cio’n e Il € o funtor cambio de paridade.

No Capitulo [5] introdicese o produto exterior non abeliano de dous mé-
dulos cruzados de alxebras de Leibniz e investigase a sta relacién coa ho-
moloxia de Leibniz en dimensién baixa. Este produto aplicase 4 construcion
dunha sucesién exacta de oito termos. Por ultimo, establécese unha relacién co
funtor cuadratico universal, aplicindoo a unha comparacién entre a segunda
homoloxia de Lie e a segunda homoloxia de Leibniz.

Corolario Sexa 0 - a — g — h — 0 unha extension central de
dlzebras de Leibniz, é dicir, [a,z] = [x,a] = 0 para todo a € a e x € g. Enton
existe a sequinte sucesion exacta:

HLs3(g) — HL3(h) — Coker <a® aba® [g?g] ® [;g] ® a)

— HLy(g) — HLa(h) — a— HLi(g) - HL1(h) — 0,

onde n: a®a—>a®ﬁ@ﬁ®a ven dado por a®@b+— (a®@b,—a®b), con
@=a+[g,g] eb=0b+[g,9] para cada a,b € a.

Proposicion Sexa g unha dlrebra de Lie. Enton, existe un subes-
pazo vectorial V' de Ker{ty: HLy(g) — Ha(g)} tal que temos un epimor-
fismo V. — T'(g®?). De este zeito, se g non é unha dlzebra de Lie perfecta,
tg: HL2(g) — Ha(g) non € un isomorfismo.

No Capitulo [6] esténdese a nocién de biderivacién & categoria de médulos
cruzados de alxebras de Leibniz a través das accidons de dlxebras de Leibniz.
Isto permitenos construir un obxecto que é o actor baixo certas circunstancias.
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Ademais, ddse unha descriciéon da accién na categoria de médulos cruzados
de alxebras de Leibniz en termos de ecuaciéns. Para rematar, comprobase
que baixo certas condiciéns, o nicleo do morfismo canénico que vai dende un
médulo cruzado ao seu actor coincide co seu centro, e introducimos as nociéns
de biderivacions internas e externas en médulos cruzados.

Teorema Sexa (m,p,n) e (n,q,u) en XLb. Sempre que se cumpran
certas condicions de compatibilidade, existe un homomorfismo de mddulos
cruzados dende (m,p,n) a (Bider(q,n), Bider(n, q, 1), A). Ademais, o reciproco
tamén é certo se estamos nalgun dos sequintes casos:

Ann(n) = 0 = Ann(q), (CON1)
Ann(n) =0 e |[q,9] =q, (CON2)
[n,n]=n e [q,9] =q. (CON3)

No Capitulo [7] esténdese a mdédulos cruzados o funtor dlxebra envolvente
universal entre dlxebras asociativas e alxebras de Leibniz. Constriese un iso-
morfismo entre a categoria de representaciéons dun médulo cruzado de alxebras
de Leibniz e a categoria de médulos pola esquerda sobre o seu médulo cruzado
envolvente universal. O modo de estudar o problema é especialmente intere-
sante xa que o actor na categoria de médulos cruzados de alxebras de Leibniz
non existe por norma xeral, asi que a proba no caso de Lie non pode ser
aplicada. Para rematar, estudamos o devandito funtor dentro do marco da
categoria de Loday-Pirashvili [31] para entender este médulo cruzado envol-
vente universal en termos do caso de médulos cruzados de alxebras de Lie.

Teorema A categoria de representacions dun médulo cruzado de dlxe-
bras de Leibniz (q,p,n) € isomorfa d categoria de mddulos pola esquerda sobre
o seu modulo cruzado de alzebras envolvente universal XUL(q,p,n).

No Capitulo [8] investigase en que sentido, para n > 3, as n-alxebras de
Lie admiten alxebras envolventes universais. Houbo varios intentos dunha
construcién (ver [14] e [2]) mais despois de analizalas polo mitdo chegamos &
conclusién de que en xeral non son vélidas. Para isto, danse contraexemplos
e condiciéns suficientes. Logo, analizamos o problema en toda a siia xene-
ralidade, demostrando que a universalidade é incompatible co feito de que a
categoria de moddulos sobre unha n-dlxebra de Lie dada sexa equivalente &
categoria de médulos sobre a dlxebra asociada U(L). De feito, existe cando
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menos un funtor dlzebra asociada U: n-Liexk — Algk que induce esta equi-
valencia, pero nunca admite un adxunto pola dereita. Para rematar, definese
una teoria de (co)homoloxia baseada no funtor alxebra asociada U.

Proposicién BLbA (L) =~ InnDer(L) se e s6 se K1 = Wh_1.

Teorema O funtor U: n-Liex — Algk ten un adzxunto pola dereita se
e s6 sen = 2. Madis concretamente, para n > 2 non existe ningun funtor
F: n-Liek — Algg cun adxunto pola dereita G: Algy — n-Liex que induza
unha equivalencia de categorias entre L-Modk e Modp(r) para todo L.

No Capitulo[9 prébase que un monoide M é un grupo se e s6 se, na categoria
de monoides, todos os puntos sobre M son fortes. Este resultado mellora e
simplifica o traballo e Montoli, Rodelo e Van der Linden [32] que caracteriza
os grupos entre os monoides coma os obxectos protomodulares.

Teorema Un monoide M ¢é un grupo se e sé se, en Mon, todos os
puntos sobre M son fortes.

No Capitulo [10] ddse unha caracterizaciéon universal das alxebras de Hopf
entre as bidlxebras coconmutativas sobre un corpo alxebricamente pechado:
una bidlxebra coconmutativa é unha alxebra de Hopf cando toda extension
escindida sobre ela admite unha descomposicién. Tamén se resolve que este
resultado non pode ser estendido ao contexto non coconmutativo, probando
asi que as categorias de bidlxebras e alxebras de Hopf non son unitais nin
protomodulares.

Teorema [10.3.5 Se K € un corpo alzebricamente pechado e Y ¢ unha bidlxe-
bra coconmutativa sobre K, enton as sequintes condicions son equivalentes:

(i) Y € unha dlzebra de Hopf;

(ii) en BiAlgk .oc; todas as extensions escindidas sobre Y admiten unha des-
k)
composicion;

(i) Y é un obzecto protomodular en BiAlgy .-

Proposicion [10.4.1L Se Y é un obzecto unital de BiAlgy, enton para todo X
temos un isomorfismo X xY =~ X QY.
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No Capitulo prébase que se K é un corpo infinito, unha variedade
de K-alxebras alternadas—non necesariamente asociativas, onde se cumpre
xx = 0—¢ localmente alxebricamente cartesiana pechada (segundo a definicién
de Gray [25]), entén é unha variedade de alxebras de Lie. En particular, Liek é
a variedade mais grande. Deste xeito, para unha variedade de K-alxebras alter-
nadas, a identidade de Jacobi convértese nunha condicién categérica. Tamén
se d4 unha caracterizacion das variedades coherentes alxebricamente (segundo
Cigoli, Gray e Van der Linden [12]).

Teorema [11.2.9] Seza K un corpo infinito. Se V é unha localmente alzebrica-
mente cartesiana pechada de K-dlzebras alternadas, entéon é unha subvariedade
de Liex. En outras palabras, Liex € a maior (LACC) variedade de K-dlzebras
alternadas. Enton, para unha variedade de K-dlzebras alternadas, son equiva-
lentes:

(i) V é unha subvariedade dunha variedade (LACC) K-dlzebras alternadas;
(7i) a identidade de Jacobi cimprese en V.

Teorema [11.2.5, Sexa K un corpo infinito. Se V € una variedade de K-
dlrebras non asociativas, enton son equivalentes:

(i) V € coherente alzebricamente;

(ii) existen A1, ..., A\ig in K tales que as identidades

z(zy) = My(zz) + Aox(yz) + Asy(z2) + Mz(zy)
+ A5 (22)y + Ae(yz)x + Ar(x2)y + As(zy)x

(ry)z = Aoy(2x) + A1ox(y2) + A11y(z2) + A22(2y)
+ M3(z2)y + Ma(yz)z + Ais(x2)y + Mg(zy)z

cumprense en V;
(iii) V € unha categoria de interese de Orzech [3/)].

Por dltimo, no Capitulo [12] falase sobre diversos traballos de investigacién
que o autor estd a realizar neste momento, e sobre ideas que poden xurdir
tendo esta tese como punto de partida.
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