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Abstract

In this thesis we collect the main definitions and results of Lie–Rinehart algebras and then

we present our recent work on universal central extensions and a non-abelian tensor product

of Lie–Rinehart algebras. We start with definitions, examples and some constructions. Then

we see the relations between Lie–Rinehart algebras and Poisson algebras. We define the

universal enveloping algebra and we explore some of its properties, giving a proof of the

version of the PBW theorem in Lie–Rinehart algebras and we see that it has a left Hopf

algebroid structure. We also define the Lie–Rinehart superalgebras and the Restricted Lie–

Rinehart algebras structures. Then we introduce the Lie–Rinehart (co)homology. To end the

thesis, we present our main results of universal central extensions in Lie–Rinehart algebras

and the definition of the non-abelian tensor product.

Resumen

En este trabajo recopilamos las principales definiciones y resultados sobre álgebras de

Lie–Rinehart y luego presentamos nuestro reciente trabajo sobre extensiones centrales uni-

versales y un producto tensorial no abeliano. Empezamos con definiciones, ejemplos y

algunas construcciones. Luego vemos la relación entre álgebras de Lie–Rinehart y álge-

bras de Poisson. Definimos el álgebra envolvente universal y exploramos algunas de sus

propiedades, dando una prueba de la versión del teorema PBW en álgebras de Lie–Rinehart

y vemos que tiene una estructura de algebroide de Hopf por la izquierda. También definimos

las estructuras de superálgebras de Lie–Rinehart y álgebras de Lie–Rinehart restringidas.

Luego introducimos la (co)homología de Lie-Rinehart. Por último, presentamos nuestros

principales resultados en extensiones centrales universales en álgebras de Lie–Rinehart y la

definición del producto tensorial no abeliano.





Introduction

The concept of a Poisson manifold is currently of much interest in mathematics and physics.

A key idea is that a Poisson structure [·, ·] on an arbitrary algebra A over a commutative

ring K gives rise to a structure of a Lie–Rinehart algebra over A in the sense of Rinehart

[28] on the A-module Ω1
A of Kähler differentials for A in a natural fashion.

A Lie–Rinehart algebra over A is a Lie algebra over R which acts on A by derivations

and it is also an A-module satisfying suitable compatibility conditions which generalize the

usual properties of the Lie algebra of smooth vector fields on a smooth manifold viewed as

a module over its ring of smooth functions; these objects have been introduced by Herz [12]

under the name “pseudo-algèbre de Lie” and were examined by Palais [26] under the name

“d-Lie ring”.

Any Lie–Rinehart algebra L over A gives rise to a complex AltA(L,A) of alternating

forms which generalizes the usual de Rham complex of a manifold and the usual complex

computing Chevalley-Eilenberg [7] Lie algebra cohomology. This observation is again due

to Palais [26]. Moreover, extending earlier work of Hochschild, Kostant and Rosenberg [13],

Rinehart [28] has shown that, when L is projective as an A-module, the homology of the

complex AltA(L,A) may be identified with Ext∗UA L(A,A) over a suitably defined universal

algebra UA L of differential operators. In particular, when A is the algebra of smooth

functions on a smooth manifold M and L the Lie algebra of smooth vector fields on M, then

UA L is the algebra of (globally defined) differential operators on M.

The concept of an Lie–Rinehart algebra over A has a geometric analogue which is nowa-

days called a Lie algebroid , see Cannas-Weinstein [2], Coste-Dazord-Weinstein [8], Mackenzie

[23], Pradines [27] or Weinstein [30].

Moreover, there are some structures generalizing Lie–Rinehart algebras as Lie–Rinehart

superalgebras studied by Chemla [6], Leibniz–Rinehart algebras studied by Ibañez-León-

Marrero [16] or restricted Lie–Rinehart algebras studied by Dokas [9].

This thesis is divided in 4 chapters. On the first one, we will introduce Lie–Rinehart

algebras, the category they form and several examples to have an idea about they behaviour.

ix



x INTRODUCTION

Then we will define some structures as the semidirect product, introduced by Rinehart [28],

the left Lie–Rinehart (A, L)-modules introduced by Palais [26], right Lie–Rinehart (A, L)-

modules introduced by Huebschmann [14] and crossed modules introduced by Casas-Ladra-

Pirashvili [4]. Then we will show the connections with Poisson algebras, as we can see

in Loday-Vallette [22], and in particular with Kähler differentials studied García-Beltrán,

Vallejo and Vorobjev [11].

In the second chapter, we will give the definition of the universal enveloping algebra of a

Lie–Rinehart algebra first given by Rinehart [28] and we will explore some properties given

by Moerdijk-Mrčun [24]. Then we will prove a version of the Poincaré-Birkhoff-Witt theorem

for Lie–Rinehart algebras first proved by Rinehart [28] and we will see that the universal

enveloping algebra has a canonical left Hopf algebroid structure studied by Kowalzig [19].

To end the chapter we will see two generalizations of Lie–Rinehart algebras and their own

universal enveloping algebra. These structures are Lie–Rinehart superalgebras introduced

by Chemla [6] and Restricted Lie–Rinehart algebras studied by Dokas [9]. All the sections

in this chapter will begin with some results in Lie algebras in order to generalize them to

Lie–Rinehart algebras.

In chapter three, we will see some classical results on (co)homology theory in Lie algebras

that can be found in [21] and [29] in order to generalize them to the (co)homology theory

of Lie–Rinehart algebras, studied by Huebschmann [14] and Rinehart [28].

The final chapter will be the main part of this thesis. We will expose our recent work

in relation with universal central extensions. We will prove that the existence of a universal

central extension of a Lie–Rinehart algebra L is equivalent that L being perfect. Then we

will give a explicit construction of a functor uceA from the category of Lie–Rinehart algebras

to itself which in the case of L being perfect, uceAL will be the universal central extension

of L. To end the chapter, we will introduce a generalization on Lie–Rinehart algebras of

the non-abelian tensor product of Lie algebras introduced by Ellis [10], we will find some

properties and we will relate it to the universal central extension.



Chapter 1

Lie–Rinehart Algebras

1.1 Preliminaries

In this section we will give some basic definitions of the topic and some examples. We remark

that if nothing else is said, all tensor product ⊗, will be tensor products over K, ⊗K .

Definition 1.1. Let K be a commutative unital ring and A a commutative unital algebra

over K. A K-derivation, is a K-linear map D : A→ A which satisfies the Leibniz’s law

D(ab) = (Da)b+ a(Db),

for all a, b ∈ A.

Then the set DerK(A) of all K-derivations of A is a Lie K-algebra with Lie bracket

[D,D′] = DD′ −D′D, and an A-module simultaneously. These two structures are related

by the following identity

[D, aD′] = a[D,D′] +D(a)D′, D,D′ ∈ DerK(A).

This leads to the notion below, which goes back to Herz under the name “pseudo–algèbre

de Lie” in [12].

Definition 1.2. Let A be a commutative, unital algebra over a commutative unital ring

K. A Lie–Rinehart algebra over A is a K-Lie algebra L with an A-module structure and a

map (usually called anchor)

αL : L→ DerK(A),

which is simultaneously a Lie algebra and A-module homomorphism and the K-Lie algebra

structure and the A-module structure on L are related by the identity

[x, ay] = a[x, y] + x(a)y,

1
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where a ∈ A, x, y ∈ L and by x(a) we mean αL(x)(a). These objects are also known as

(K,A)-Lie algebras [28] and d-Lie rings [26].

In this way, we see that DerK(A) is a Lie–Rinehart algebra over A, where αDerK(A) =

IdDerK(A).

Example 1.3. Let us observe that Lie–Rinehart algebras over A with trivial anchor map

αL : L→ DerK(A) are exactly Lie A-algebras. If A = K, then DerK(A) = 0 and there is no

difference between Lie and Lie–Rinehart algebras. Therefore the concept of Lie–Rinehart

algebras generalizes the concept of Lie A-algebras.

Before having more examples of Lie–Rinehart algebras we will see how is the category

that they form.

Definition 1.4. Let L and M Lie–Rinehart algebras over A. We say that f : L → M is a

Lie–Rinehart homomorphism over A if it is simultaneously a K-Lie algebra and A-module

homomorphism. Furthermore f must conserve the action in DerK(A), in other words, the

following diagram must be commutative.

L
f //

αL
##HHHHHHHHH M

αMzzuuuuuuuuu

DerK(A)

We denote by LRAK the category of Lie–Rinehart algebras over A. By Example 1.3 we

have the full inclusion

LieA ⊂ LRAK,

where LieA denotes the category of A-Lie algebras.

It is important to recall that the product in the category LRAK as a set, is not the product

in Set. Given two Lie–Rinehart algebras L and M , the product in LRAK is L×DerK(A) M =

{(x,m) ∈ L ×M : x(a) = m(a) for all a ∈ A}, with the obvious action (x,m)(a) = x(a) =

m(a) for all a ∈ A, x ∈ L and m ∈M .

Remark 1.5. Some authors consider a different category when they speak about Lie–Rinehart

algebras. One can define the category changing the base K-algebra, so the objects will be

pairs of the form (A, L) and the morphisms will be pairs (φ, f), where φ : A → A′ is a

homomorphism of K-algebras, f : L→ L′ a Lie algebra homomorphism and they are related

by f(ax) = φ(a)f(x) and φ
(
x(a)

)
= f(x)

(
φ(a)

)
. In the most part of topics that we are

going to study here, it is irrelevant which category are we considering, but by default we are

not going to change our base K-algebra, so we will be in the category defined above.
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Definition 1.6. Let L be a Lie–Rinehart algebra over A. A Lie–Rinehart subalgebra M of

L is a K-Lie subalgebra which is an A-module, with action induced by the inclusion in L.

If M and N are two Lie–Rinehart subalgebras of L, we define the commutator of M and

N , denoted by {M,N} as the A-module spanned by the elements of the form a[x, y] where

a ∈ A, x ∈M and y ∈ N .

Definition 1.7. Given a subalgebra M of L we say that it is a Lie–Rinehart ideal if M is a

K-Lie ideal of L and the action induced by the inclusion is the trivial action, i.e. α(M) = 0.

An example of an ideal is the kernel of a Lie–Rinehart homomorphism. Another example

is the center of a Lie–Rinehart algebra, defined by

ZA(L) = {x ∈ L : [ax, z] = 0 and x(a) = 0 for all a ∈ A, z ∈ L}.

We denote by Lab the A-module L/{L,L}. We recall that the subalgebra {L,L} is not
necessarily a Lie–Rinehart ideal, so Lab may not be a Lie–Rinehart algebra.

We will see now more examples of Lie–Rinehart algebras.

Example 1.8. If g is a K-Lie algebra acting on a commutative K-algebra A by deriva-

tions (that is, a homomorphism of Lie K-algebras γ : g → DerK(A) is given), then the

transformation Lie–Rinehart algebra of (g, A) is L = A ⊗ g with the Lie bracket

[a⊗ g, a′ ⊗ g′] := aa′ ⊗ [g, g′] + aγ(g)(a′)⊗ g′ − a′γ(g′)(a)⊗ g,

where a, a′ ∈ A, g, g′ ∈ g and the action αL : L → DerK(A) is given by αL(a ⊗ g)(a′) =

aγ(g)(a′).

Example 1.9. LetM be an A-module. The Atiyah algebra AM ofM is the Lie–Rinehart

A-algebra whose elements are pairs (f,D) with f ∈ EndK(M) and D ∈ DerK(A) satisfying

the following property:

f(am) = af(m) +D(a)m, a ∈ A,m ∈M.

AM is a Lie–Rinehart A-algebra with the Lie bracket

[(f,D), (f ′, D′)] = ([f, f ′], [D,D′])

and anchor map αAM(f,D) = D.

Example 1.10. Consider the K-algebra of dual numbers,

A = K[ε] = K[X]/(X2) =
{
c1 + c2ε | c1, c2 ∈ K, ε2 = 0

}
.
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We can endow to A with the Lie algebra structure given by the bracket:

[c1 + c2ε, c
′
1 + c′2ε] = (c1c

′
2 − c2c′1)ε, c1 + c2ε, c

′
1 + c′2ε ∈ A.

Thus A is a Lie–Rinehart algebra over A with anchor map αA : A → DerK(A), c1 + c2ε 7→
adc1 , where adc1(c′1 + c′2ε) = [c1, c

′
1 + c′2ε] is the adjoint map of c1.

Example 1.11. The A-module DerK(A) ⊕ A is a Lie–Rinehart algebra over A with the

bracket

[(D, a), (D′, a′)] =
(
[D,D′], D(a′)−D′(a)

)
,

and anchor map π1 : DerK(A)⊕A→ DerK(A), the projection onto the first factor.

Definition 1.12. Let M be a smooth manifold. Denote by T (M) the tangent bundle of M

and X(M) the Lie algebra of smooth vector fields on M. A Lie algebroid over M is a real

smooth vector bundle π : g → M over M, together with a smooth map an : g → T (M) of

vector bundles over M and a Lie algebra structure on the vector space Γg of smooth sections

of g, such that

1. the induced map Γ (an) : Γg→ X(M) is a Lie algebra homomorphism,

2. the identity

[x, fy] = f [x, y] + Γ (an)(x)(f)y,

holds for any f ∈ C(M) and x, y ∈ Γg.

Example 1.13. In particular, let K = R and A = C∞(M) be the algebra of smooth

functions on a compact manifold M and let L be a Lie–Rinehart algebra over A. Assume

that L is finitely generated and projective as an A-module. Then it follows from Serre–

Swan’s theorem that L = C∞(E), is the space of smooth sections of a vector bundle over M.

The bundle map α : E → T (M) induces α : C∞(E)→ DerR
(
C∞(M)

)
= C∞

(
T (M)

)
. In other

words, Lie algebroids over M are precisely the Lie–Rinehart algebras over C∞(M) which are

finitely generated and projective as C∞(M)-modules. So one recovers Lie algebroids as a

particular case of Lie–Rinehart algebras.

1.2 Constructions and Actions

Definition 1.14. Let L ∈ LRAK and let R be a Lie A-algebra. We will say that L acts on

R if it is given a K-linear map

L⊗R→ R, (x, r) 7→ x ◦ r, x ∈ L, r ∈ R

such that the following identities hold
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1) [x, y] ◦ r = x ◦ (y ◦ r)− y ◦ (x ◦ r),

2) x ◦ [r, r′] = [x ◦ r, r′]− [x ◦ r′, r],

3) ax ◦ r = a(x ◦ r),

4) x ◦ (ar) = a(x ◦ r) + x(a)r,

where a ∈ A, x, y ∈ L and r, r′ ∈ R.

Let us observe that 1) and 2) mean that L acts on R in the category of Lie K-algebras.

Definition 1.15. Let us consider a Lie–Rinehart algebra L and a Lie A-algebra R on which

L acts. Since L acts on R in the category of Lie K-algebras as well, we can form the semi–

direct product L o R in the category of Lie K-algebras, which is L ⊕ R as a K-module,

equipped with the following bracket

[(x, r), (y, r′)] := ([x, y], [r, r′] + x ◦ r′ − y ◦ r),

where x, y ∈ L and r, r′ ∈ R. We claim that LoR has also a natural Lie–Rinehart algebra

structure. Firstly, L o R as an A-module is the direct sum of A-modules L and R. Hence

a(x, r) = (ax, ar). Secondly the map

α̃ : LoR→ DerK(A)

is given by α̃(x, r) := αL(x). In this way we really get a Lie–Rinehart algebra. Indeed, it is

clear that α̃ is simultaneously an A-module and a Lie algebra homomorphism and we obtain

[(x, r), a(y, r′)] = [(x, r), (ay, ar′)] = ([x, ay], [r, ar′] + x ◦ (ar′)− ay ◦ r)

=
(
a[x, y] + x(a)y, a[r, r′] + a(x ◦ r′) + x(a)r′ − a(y ◦ r)

)
= a([x, y], [r, r′] + x ◦ r′ − y ◦ r) + (x(a)y, x(a)r′)

= a[(x, r), (y, r′)] + x(a)(y, r′).

Thus LoR is indeed a Lie–Rinehart algebra.

Definition 1.16. A left Lie–Rinehart (A, L)-module over a Lie–Rinehart A-algebra L is a

K-moduleM together with two operations

L⊗M→M, (x,m) 7→ xm,

and

A⊗M→M, (a,m) 7→ am,
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such that the first one makesM into a module over the Lie K-algebra L in the sense of the

Lie algebra theory, while the second map makesM into an A-module and additionally the

following compatibility conditions hold

(ax)(m) = a(xm),

x(am) = a(xm) + x(a)m, a ∈ A,m ∈M and x ∈ L.

Notice that a left Lie–Rinehart (A, L)-module is equivalent to giving a morphism of

Lie–Rinehart A-algebras L→ AM (see Example 1.9).

Definition 1.17. For a left Lie-Rinehart (A, L)-module M one can define the semi-direct

product LoM to be L⊕M as an A-module with the bracket [(x,m), (y, n)] =
(
[x, y], xn−

ym
)
, x, y ∈ L,m, n ∈M.

Definition 1.18. A right Lie–Rinehart (A, L)-module over a Lie–Rinehart A-algebra L is

a K-moduleM together with two operations

M⊗ L→M, (m,x) 7→ mx,

and

A⊗M→M, (a,m) 7→ am,

such that the first one makesM into a module over the Lie K-algebra L in the sense of the

Lie algebra theory, while the second map makesM into an A-module and additionally the

following compatibility conditions hold

(am)x = m(ax) = a(mx)− x(a)m, a ∈ A,m ∈M and x ∈ L.

Definition 1.19. A crossed module ∂ : R→ L of Lie–Rinehart algebras over A (defined in

[4]) consists of a Lie–Rinehart algebra L and a A-Lie algebra R together with an action of

L on R and the Lie algebras homomorphism ∂ such that the following identities hold:

1. ∂(x ◦ r) = [x, ∂(r)],

2. ∂(r′) ◦ r = [r′, r],

3. ∂(ar) = a∂(r),

4. ∂(r)(a) = 0,

for all a ∈ A, r ∈ R and x ∈ L.

Example 1.20. We can see some examples of crossed modules of Lie–Rinehart algebras.
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1. For any Lie–Rinehart homomorphism f : L→ R, the diagram Ker f → L is a crossed

module of Lie–Rinehart algebras.

2. If M is an ideal of L, the inclusion M ↪→ L is a crossed module where the action of L

on M is given by the Lie bracket.

3. If R is a left Lie–Rinehart (A, L)-module with Lie bracket [R,R] = 0, the morphism

0: R→ L is a crossed module.

4. Let ∂ : R→ L be a central epimorphism
(
i.e. Ker ∂ ⊂ Z(R)

)
from a Lie A-algebra R to

a Lie–Rinehart algebra L which is also an A-Lie algebra. Then ∂ is a crossed module

where the action from L to R is given by x ◦ r = [r′, r], such that ∂(r′) = x.

1.3 Lie–Rinehart Algebras and Poisson Algebras

Lie–Rinehart algebras are closely related to Poisson algebras. They both come from differ-

ential geometry and there are some similarities between them. In this section we will try to

obtain Lie–Rinehart algebras from Poisson algebras and viceversa, and to see a geometrical

point of view of this topic.

Definition 1.21. A Poisson algebra is a commutative K-algebra P equipped with a Lie

K-algebra structure such that the following identity, called Leibniz rule, holds

[x, yz] = y[x, z] + [x, y]z,

where x, y, z ∈ P .

Example 1.22. We can see in [22] that if L is a Lie–Rinehart algebra over A, we can define

a Poisson algebra P = A⊕ L with the two operations defined by

(a+ x)(b+ y) := ab+ (ay + bx),

[a+ x, b+ y] :=
(
x(b)− y(a)

)
+ [x, y],

where a, b ∈ A and x, y ∈ L. Conversely, any Poisson algebra P , whose underlying vector

space can be split as P = A⊕ L and such that the two operations · and [ , ] take values as

follows:

A⊗A
·−→ A, A⊗A

[ , ]−−→ 0,

A⊗ L ·−→ L, L⊗A
[ , ]−−→ A,

L⊗ L ·−→ 0, L⊗ L [ , ]−−→ L,

defines a Lie–Rinehart algebra L over A. The two constructions are inverse to each other.
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There are (at least) three Lie–Rinehart algebras related to any Poisson algebra P , which

we will see them in the next examples.

Example 1.23. The first one is P itself considered as a P -module in an obvious way,

where the action of P (as a Lie algebra) on P (as a commutative algebra) is given by the

homomorphism ad : P → Der(P ) given by ad(x) = [x,−] ∈ Der(P ).

There is a variant of this construction in the graded case. Let P∗ =
⊕

n≥0 Pn be a com-

mutative graded K-algebra in the sense of commutative algebra (i.e. no signs are involved)

and assume P∗ is equipped with a Poisson algebra structure such that the bracket has degree

(-1). Thus [−,−] : Pn ⊗ Pm → Pn+m−1. Then P1 is a Lie–Rinehart P0-algebra, where the

Lie algebra homomorphism P1 → Der(P0) is given by x1 7→ [x1,−], [x1,−](x0) = [x1, x0],

where ai ∈ Pi, i = 0, 1.

Example 1.24. To see the second example, we establish

H0
Poiss(P, P ) := {x ∈ P | [x,−] = 0}.

Then H0
Poiss(P, P ) contains the unit of P and is closed with respect to products, thus it is a

subalgebra of P . A Poisson derivation of P is a linear map D : P → P which is a derivation

simultaneously with respect to commutative and Lie algebra structures. We let DerPoiss(P )

be the collection of all Poisson derivations of P . It is closed with respect to the Lie bracket.

Moreover, if x ∈ H0
Poiss(P, P ) and D ∈ DerPoiss(P ) then xD ∈ DerPoiss(P ). It follows that

DerPoiss(P ) is a Lie–Rinehart algebra over H0
Poiss(P, P ).

To see the last one we need a definition first.

Definition 1.25. Given a commutative K-algebra B, we define the Kähler differential

Ω1
B as the kernel of the multiplication B ⊗ B → B. We define the map d: B → Ω1

B by

db = 1 ⊗ b − b ⊗ 1, which is a derivation of B over K with values into Ω1
B. It is clear from

the definition that Ω1
B = SpanB{db : b ∈ B}, since the elements of Ω1

B lie in the kernel of the

multiplication map, if
∑
aj ⊗ bj ∈ Ω1

B, then
∑
ajbj = 0 and therefore∑

aj ⊗ bj =
∑

(aj ⊗ bj − ajbj ⊗ 1) =
∑

ajdbj ,

where aj , bj ∈ B.

Example 1.26. Given a Poisson algebra P , we can extend by linearity the map dx 7→ ad(x)

to get a morphism ρ : Ω1
P → DerK(P ) uniquely defined by ρ(dx) = ad(x) for all x ∈ P . Also

given α ∈ Ω1
P , we can define dα through the formula

dα(D,D′) = D
(
α(D′)

)
−D′

(
α(D)

)
− α([D,D′]),
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where D,D′ ∈ DerK(P ).

In this way, Ω1
P is a Lie–Rinehart algebra with anchor map ρ and Lie bracket

[xdx′, ydy′] = x[x′, y]dy′ + y[x, y′]dx′ + xyd[x′, y′],

where x, x′, y, y′ ∈ P , and the bracket used on the left side of the identity is the bracket on

the Poisson structure.

These examples give us some ways to associate Lie–Rinehart algebras from Poisson al-

gebras. Now we will do the opposite of Example 1.26, find out when given a Lie–Rinehart

algebra Ω1
P we can form a Poisson structure on P . In addition, if Ω1

P determines a Poisson

structure on P , we will say that is Poisson type.

We can define the bracket on P in the following way

[x, y] = (dy)
(
ρ(dx)

)
=
(
ρ(dx)

)
(y).

This bracket is K-linear and satisfies the Leibniz rule

[x, yz] =
(
ρ(dx)

)
(yz) = yρ(dx)(z) + ρ(dx)(y)z = y[x, z] + [x, y]z,

for all x, y, z ∈ P .

Theorem 1.27. Let Ω1
P a Lie–Rinehart algebra. Then there is a Poisson algebra structure

on P such that ρ(dx) = ad(x) for all x ∈ P if and only if:

1. dx
(
ρ(ddy)

)
= −dy

(
ρ(dx)

)
, for all x, y ∈ P ,

2. One of the following conditions holds:

(a) dα = 0 = dβ implies d[α, β] = 0, where α, β ∈ Ω1
P .

(b) [dx, dy] = d

(
dy
(
ρ(dx)

))
for all x, y ∈ P .

Under these conditions, the Lie bracket is reconstructed from ρ by the formula

[xdx′, ydy′] = x[x′, y]dy′ + y[x, y′]dx′ + xyd[x′, y′].

Proof. The proof of this theorem is long and will be omitted but it can be found in [11].

When the anchor map ρ is injective, the property [dx, dy] = d[x, y] is trivial, since ρ is

a Lie algebra morphism, so ρ[dx,dy] = [ρ(dx), ρ(dy)] = ρ(d[x, y]). When ρ is not injective,

this property can be true or not. We will see an example where is true.
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Example 1.28. Let K = R and P = R[x1, x2, x3]. Then DerK(P ) = Span{∂1, ∂2, ∂3} and
Ω1
P = Span{dx1,dx2,dx3}. We define the following bracket

[pidx
i, qjdx

j ] =
(
p1(∂2 + ∂3) + p2(−∂1 + ∂3) + p3(−∂1 − ∂2)

)
(qi)

−
(
q1(∂2 + ∂3) + q2(−∂1 + ∂3) + q3(−∂1 − ∂2)

)
(pi)dx

i,

and anchor map

ρ(pi)dx
i 7→ −(p2 + p3)∂1 + (p1 − p3)∂2 + (p1 + p2)∂3.

The matrix representation of ρ to the given basis in DerK(P ) and Ω1
P is

ρ =


0 1 1

−1 0 1

−1 −1 0

 .

Therefore, ρ is in the condition of the first part of Theorem 1.27 and a long but straightfor-

ward computation, shows that Ω1
P is a Lie–Rinehart algebra. Let us see that is of Poisson

type checking the property [dx, dy] = d[x, y]. For any p, q ∈ P ,

d[p, q] = d
(
ρ(dp)(q)

)
= d

(
ρ(∂ipdx

i)(q)
)

= d(−(∂2p+ ∂3p)∂1q + (∂1p− ∂3p)∂2q + (∂1q + ∂2p)∂3q).

The dx1 factor in the expansion of the expression (the other cases are similar) is

− (∂2p+ ∂3p)∂
2
11q + (∂1p− ∂3p)∂

2
12q + (∂1p+ ∂2p)∂

2
13q

− (∂2
12p+ ∂2

13p)∂1q + (∂2
11p− ∂2

13)∂2q + (∂2
11p+ ∂122p)∂3q.

On the other hand, the bracket on the Lie–Rinehart algebra is

[dp,dq] = [∂ipdx
i, ∂jqdx

j ] = ρ(dp)(∂kq)− ρ(dq)(∂kp)dx
k.

For k = 1, we compute the coefficient of dx1,

− (∂2p+ ∂3p)∂
2
11q + (∂1p− ∂3p)∂

2
12q + (∂1p+ ∂2p)∂

2
13q

− (∂2
12p+ ∂2

13p)∂1q + (∂2
11p− ∂2

13)∂2q + (∂2
11p+ ∂122p)∂3q.

which is the same as above. So Ω1
P is a Lie–Rinehart algebra of Poisson type.



Chapter 2

Universal Enveloping Algebra

In this chapter we will see the definition and some characterizations of the Universal En-

veloping Algebra of Lie algebras, and then we will extend them to Lie–Rinehart algebras.

Then we will see some generalizations of Lie–Rinehart algebras and their correspondents

universal enveloping algebras.

2.1 Universal Enveloping Algebra

Definition 2.1. Let L a Lie algebra, a universal enveloping algebra of L is an associative,

unital algebra UL with the standard Lie bracket [x, y] := xy − yx and a morphism i : L →

UL, such that for any other associative, unital algebra B and a Lie morphism κ : L → B

there is a unique algebra homomorphism f : UL→ B such that f
(
i(x)

)
= κ(x).

It is easy to check that the universal enveloping algebra is unique up to isomorphism. In

particular, the construction of UL is the K-algebra generated by the symbols i(x) for each

x ∈ L satisfying the usual relations

i(kx) = ki(x),

i(x+ y) = i(x) + i(y),

and the additional relation

i([x, y]) = i(x)i(y)− i(y)i(x),

for all k ∈ K and x, y ∈ L.

Definition 2.2. A filtration of an K-algebra C is a sequence of K-submodules

C0 ⊂ C1 ⊂ · · ·Cn ⊂ · · · ⊂
⋃
i

Ci = C,

11
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such that CiCj ⊂ Ci+j . The associated graded algebra of a filtration is defined by gr∗(C) =⊕
n≥0 Cn/Cn−1 with multiplication grigrj → gri+j . Note that the universal enveloping

algebra UL defines an algebra filtration where Ci are the K-submodules generated by

i(x1) · · · i(xi).

Now we move to the case of Lie–Rinehart algebras.

Definition 2.3. Let L a Lie–Rinehart algebra over A. Let U(A⊕L) the universal enveloping

algebra of the Lie algebra (A⊕ L), with bracket

[(a, x), (b, y)] = (x(b)− y(a), [x, y]).

If i : A ⊕ L → U(A ⊕ L) is the canonical inclusion, we write Ū(A ⊕ L) for the subalgebra

generated by i(A⊕ L). The universal enveloping algebra of L is the quotient

UA L = Ū(A⊕ L)/I,

where I is the two-sided ideal in Ū(A⊕L) generated by the elements i(a, 0) ·i(b, x)−i(ab, ax)

for all a, b ∈ A and x ∈ L.

In particular, another way to see the universal enveloping algebra of L, is that UA L is

the algebra generated by the symbols j(a) for each a ∈ A and i(x) for each x ∈ L, satisfying
the following relations

j(1) = 1,

j(ab) = j(a)j(b),

i(ax) = j(a)i(x),

i([x, y]) = i(x)i(y)− i(y)i(x),

i(x)j(a) = j(a)i(x) + j
(
x(a)

)
.

The universal enveloping algebra UA L is characterized by the following universal prop-

erty: if B is any K-algebra, κA : A→ B is a homomorphism of K-algebras and κL : L→ B

is a homomorphism of Lie algebras such that κA(a)κL(x) = κL(ax) and [κL(x), κA(a)] =

κA
(
x(a)

)
for any a ∈ A and x ∈ L, then there exists a unique homomorphism of algebras

f : UA L→ B such that f
(
i(x)

)
= κL(x) for all x ∈ L and f

(
j(a)

)
= κA(a) for all a ∈ A.

In particular, the universal property of UA L implies that there exists a unique represen-

tation

% : UA L→ EndK(A)

such that % ◦ i = ρ and % ◦ j is the canonical representation given by the multiplication in A.
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Example 2.4. If L is a Lie A-algebra as in Example 1.3, the universal enveloping algebra

UA L is the classical universal enveloping algebra U(L) of L.

Example 2.5. Let K = R, M a manifold, A = C∞(M) and L = DerK
(
C∞(M)

)
. This way,

L is a Lie–Rinehart algebra with anchor map the identity map, and the universal enveloping

algebra UA L is the ring of global differential operators on M.

It is clear that there is a one-to-one correspondence between left (A, L)-modules and left

UA L-modules. In particular, the obvious (A, L)-module structure on A induces on A a left

UA L-module structure given by

µ : UA L⊗A→ A, µ(x⊗ a) = x(a).

Let Vn be the A-submodule spanned on all products i(x1) · · · i(xk), where k ≤ n. Then

0 ⊂ A = V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · · ⊂ UA L,

defines an algebra filtration on UA L. It is clear that UA L = ∪n≥0Vn. It follows from the

fourth relation of the definition that the associated graded object gr∗(V ) is a commutative

A-algebra. In other words UA L is an almost commutative algebra in the following sense.

Definition 2.6. An almost commutative algebra is an associative K-algebra C together

with a filtration

0 ⊂ A = C0 ⊂ C1 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ C =
⋃
n≥0

Cn

CnCm ⊂ Cn+m and such that the associated graded object gr∗(C) =
⊕

n≥0 Cn/Cn−1 is a

commutative A-algebra.

Remark 2.7. If C is an almost commutative algebra, then there is a well-defined bracket

[−,−] : grn(C)⊗ grm(C) −→ grn+m−1(C)

which is given as follows. Let a ∈ grn(C) and b ∈ grm(C) and â ∈ Cn and b̂ ∈ Cm

representing a and b respectively. Since gr∗(C) is a commutative algebra it follows that

âb̂− b̂â ∈ Cn+m−1 and the corresponding class in grn+m−1(C) is [a, b]. It is also well known

that in this way we obtain a Poisson algebra structure on gr∗(C). Since the bracket is

of degree (-1) by Example 1.23, L = gr1(C) is a Lie–Rinehart algebra over A = gr0(C).

Moreover the exact sequence

0→ A→ C1 → L→ 0,

is an abelian extension of Lie–Rinehart algebras (see below Definition 3.25).
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Proposition 2.8. The correspondence assigning C1 to the almost commutative algebra C,

defines a functor LR : ACommA → LRAK.

Proof. Let f : C → D ∈ ACommA. Since f preserves the filtration, f(C1) ⊂ D1. Furthermore,

f(ax) = f(a)f(x) = af(x), for any a ∈ C0 = D0 and x ∈ C1, and f([x, y]) = f(xy − yx) =

f(x)f(y)−f(y)f(x) = [f(x), f(y)], for x, y ∈ C1. Hence the restriction of f to C1, which we

shall call LR(f), is a morphism of K-Lie algebras and of A-modules such that the following

diagram commutes in LieK,

C1

LR(f) //

[◦,−] $$HHHHHHHHH D1

[◦,−]zzuuuuuuuuu

DerK(A)

Thus, LR(f) ∈ LRAK.

On the other hand, it is clear that LR(1C1) = 1C1 and the following diagram commutes

in K-mod,

C
f // D

g // E

C1

?�

iC

OO

LR(f) // D1

?�

iD

OO

LR(g) // E1

?�

iE

OO

Hence LR is functorial.

Proposition 2.9. The functor LR is right adjoint to the universal enveloping functor

UA : LRAK → ACommA.

Proof. Let Φ: ACommA(UA L,C)→ LRAK(L, LRC) be the map given as follows. Since UA L is

generated as a K-algebra by L and A, a morphism f : UA L→ C is completely determined

by its restriction to L and A. Since f(a) = a for every a ∈ A, and f(L) ⊂ f
(
(UA L)1

)
⊂ C1,

it follows that the restriction of f to L, Φf : L → C1 = LRC is a monomorphism of Lie–

Rinehart algebras.

Let g : L → C1 ∈ LRAK. We build up the morphism g̃ : UA L → C by g̃(ax1 · · ·xm) :=

ag(x1) · · · g(xm) ∈ C. It is straightforward to see that g̃ ∈ ACommA and Φg̃ = g. Hence Φ is

bijective, and UA and LR form an adjoint pair.

2.2 PBW Theorem

In this section we will give the classical result theorem of Poincaré-Birkhoff-Witt in Lie

algebras, and we will prove the analogue for Lie–Rinehart algebras first proved by Rinehart

in [28].
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Definition 2.10. The tensor algebra of an K-module N , is the graded K-algebra

T (N ) =
⊕
n≥0

Tn(N ),

where T 0(N ) = K and Tn(N ) = N⊗
n︸︸
· · · ⊗N .

The universal enveloping algebra of a Lie algebra L, is just T (L)/I where I is the ideal

generated by the elements x⊗ y − y ⊗ x− [x, y], where x, y ∈ L.

Definition 2.11. The symmetric algebra of N is

Sym(N ) = T (N )/I,

where I is the ideal generated by the symbols m⊗ n− n⊗m, for m,n ∈ N .

Lemma 2.12. If G(UL) is the universal enveloping algebra with the graded structure, the

canonical epimorphism T (L)→ UL factorizes into an epimorphism Sym(L)→ G(UL).

Proof. It is easy to see since the elements of the form x ⊗ y − y ⊗ x ∈ T (L)2 are sent to

[x, y] ∈ (UL)1.

Theorem 2.13 (PBW Theorem). If L is a Lie algebra and it is K-free, then the canonical

epimorphism,

Sym(L)→ G(UL),

is an isomorphism.

Corollary 2.14. If L is free as an K-module with basis {xi, i ∈ I}, the set

{xsii1x
s2
i2
· · ·xsrir : i1 < i2 < · · · < ir and si ≥ 0},

form an K-basis of UL. In particular i : L→ UL is injective.

These are classical results of Lie algebras. Now we will move into Lie–Rinehart algebras.

We will need some previous lemmas to prove the results.

Lemma 2.15. Let A be a ring,Mi be a right A-module for every i in some index set, and

let N be a projective left A-module. Then, the natural homomorphism

(
∏
i

Mi)⊗A N →
∏
i

(Mi ⊗A B),

is injective.
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Lemma 2.16. Let A be a commutative ring. The natural map

A→
∏

p∈Max(A)

Ap,

where Max(A) are the maximal ideals of A and Ap is the corresponding local ring, is injective.

Proof. The proofs of these lemmas can be found in [28].

Definition 2.17. Let L a Lie–Rinehart algebra over A and letM a Lie module for A⊕L.
We say thatM is an A-regular L-module if

a(zm) = (az)m,

for all a ∈ A, z ∈ A⊕ L and m ∈M.

The canonical map A ⊕ L → UA L endows any UA L-module with the structure of an

A-regular L-module. Thus we have a one-to-one correspondence between UA L-modules and

A-regular L-modules. In particular, A has a natural structure as an A-regular L-module,

and the representation of A thus obtained is faithful. Hence the map A→ UA L is injective

and we will identify A with its image in UA L.

If M and N are UA L-modules, we can define an A-regular L-module on M⊗N such

that

a(m⊗ n) = (am)⊗ n = m⊗ (an),

x(m⊗ n) = (xm)⊗ n+m⊗ (xn),

for a ∈ A, x ∈ L, m ∈M and n ∈ N .

Lemma 2.18. Let N a left UA L-module. The UA L-module N ⊗ UA L as defined above is

isomorphic to UA L⊗N with the usual left UA L-module structure.

Proof. The proof can be read in [13].

Given the graded algebra structure on UA L, there is a canonical map T (L)→ UA L, and

it factorizes into a map Sym(L) → G(UA L). This leads to the analogue of the Poincaré-

Birkhoff-Witt theorem of Lie algebras.

Theorem 2.19 (PBWTheorem). If L is a Lie–Rinehart algebra over A, and is A-projective,

then the canonical A-module epimorphism,

Sym(L)→ G(UA L)

where G(UA L) is UA seen as a graded A-algebra, is an A-algebra isomorphism.
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Proof. First of all, we will prove the theorem assuming that L is A-free. Let {xi} be an

ordered A-basis of L. We denote by Xi the elements xi considered as elements of Sym(L),

and we denote the image of xi in UA L by the inclusion of L by x̄i. If I is a sequence

i1 ≤ · · · ≤ in, let XI = Xi1 · · ·Xin . If I is the empty sequence, let XI = 1. We write

j ≤ I in case either j ≤ i1 or I is empty. The main part of the proof is to define an

A-regular L-module structure on Sym(L) such that, if j ≤ I, xjXI = XjXI . Once we

have this structure, we obtain an UA L-module structure for Sym(L) because the one-to-one

correspondence, and this structure, will have the property that for any ordered sequence I,

(x̄i1 , . . . , x̄in) · 1 = XI . Since the XI form an A-basis for Sym(L) it suffices to prove the

theorem.

Let Symp(L) denote the homogeneous component of degree p of Sym(L) and let Qp =∑p
q=0 Symp(L). We will define by induction a K-bilinear map L × Sym(L) → Sym(L),

denoted by (x, Y ) 7→ xY by defining its restriction L × Qp → Qp+1 for each p, subject to

the following conditions:

xjXI = XjXI if j ≤ I and XI ∈ Qp, (2.1)

x(x′Y ) = x′(xY ) + [x, x′]Y if x, x′ ∈ L and Y ∈ Qp−1, (2.2)

xjXI −XJXI ∈ Qq if XI ∈ Qq and q ≤ p, (2.3)

(ax)(bY ) = a(b(xY ) + x(b)Y ) if a, b ∈ A, x ∈ L and Y ∈ Qp. (2.4)

For p = 0, we define xa = ax+ x(a), satisfying conditions (2.1) through (2.4).

Now suppose we have already defined an action L×Qp−1 → Qp satisfying the conditions

corresponding to (2.1) through (2.4). In order to extend this, we first define the action by

the elements xi mapping Symp(L) into Qp+1. We may assume inductively that we have

defined this action for all xj such that j < i. Let XI ∈ Symp(L), if i ≤ I, we define

xiXI = XiXI . If not, then I = (j, J) with j < i, and by induction hypothesis we can define

xiXI = xj(xiXJ)+[xi, xj ]XJ . Now we define the action by xi on all of Symp(L) by defining

xi(aXI) = a(xiXI)+xi(a)XI for a ∈ A and extending by K-linearity. Thus we have defined

the action by the elements xi. To define the action on Symp(L) by an arbitrary element of

L, define (axi)Y = a(xiY ) for a ∈ A and Y ∈ Symp(L), and we extend it by K-linearity.

Conditions (2.1), (2.3) and (2.4) are clearly satisfied. We just have to see the verification of

condition (2.3),

xi(xjXH) = xj(xiXH) + [xi, xj ]XH .

If i > j, with j ≤ H, then (j,H) = J , and using the definition of the action, the condition

follows immediately. If j > i and i ≤ H, since the Lie bracket is skew-symmetric it is the

same as before. In addition, if i = j condition (2.3) trivially holds. So let us consider the
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case when neither i ≤ H nor j ≤ H. Then H has positive length and H = (g,G) where

g ≤ G, g < i and g < j. By the inductive assumption,

xj(XH) = xj(xgXG) = xg(xjXG) + [xj , xg]XG = xg(xjXG) + xgw + [xj , xg]XG,

where w = xjXG −XjXG ∈ Qp−1. Applying xi to both sides we have

xi(xjXH) = xi
(
xg(xjXG)

)
+ xi(xgw) + xi([xj , xg]XL).

Since g ≤ (j,G), condition (2.3) may be applied, and after some computation we get

xi(xjXH) = xg
(
xi(xjXG)

)
+ [xi, xg](xjXG) + [xj , xg](xiXG) +

[
xi, [xj , xg]

]
XG.

Our assumptions on i and j were symmetric, so the previous identity holds if we change of

position i and j. Subtracting and applying condition (2.3) again, the final result is

xi(xjXH)− xj(xiXH) = [xi, xj ]XH .

Therefore we have an action by elements of L on Sym(L). We use this to define an

action of A⊕ L on Sym(L) in the obvious way. Using (2.2) and (2.4) it is easy to see that

this endows Sym(L) with the structure of an A-regular L-module, and we have proven the

theorem when L is A-free.

Now we assume only that L is A-projective. Let p any prime ideal of A. If D is any K-

derivation of A, the formula Dp(a/b) =
(
bD(a)− aD(b)

)
/b2 extends D to a K-derivation of

Ap. Thus L is represented on Ap. Let Lp = Ap⊗A L with the natural Ap-module structure.

We can define a bracket on Lp

[a⊗ x, b⊗ y] = ab⊗ [x, y] + ax(b)⊗ y − by(a)⊗ x,

where a, b ∈ Ap and x, y ∈ L. It is a straightforward computation to check that this is a Lie

bracket. In addition, the elements of Lp act as derivations of Ap in the natural way, so Lp

becomes a Lie–Rinehart algebra over Ap.

Since L is A-projective, so is Sym(L), and hence the monomorphism of Lemma 2.16 and

the injection of Lemma 2.15, there is a monomorphism

Sym(L) = A⊗A Sym(L)→ (
∏

Ap)⊗A Sym(L)→
∏(

Ap ⊗A Sym(L)
)

=
∏

Sym(Lp),

where the product is taken over all the maximal ideals of A. The natural A-module and

Lie algebra homomorphism A⊕L→ Ap⊕Lp defines an A-algebra homomorphism UA L→

UA Lp. Therefore we have a map UA L →
∏

(UA Lp). This map is compatible with the

filtration of UA L and UA Lp so we obtain a map G(UA L) →
∏

G(UA Lp). Since L is A-

projective, Lp is Ap-projective. Hence, since Ap is a local ring, Lp is Ap-free (this can be
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found in [18]. By the first part of the proof, the map Sym(Lp)→ G(UA Lp) is therefore an

isomorphism. Hence we have the commutative and exact diagram

0

��
Sym(L) //

��

G(UA L) //

��

0

0 // ∏Sym(Lp) // ∏G(UA Lp) // 0

where we deduce that the arrow of the top row is injective, completing the proof.

In the particular case of Example 1.3, this theorem is the usual Poincaré-Birkhoff-Witt

theorem for Lie algebras.

Corollary 2.20. If L is a Lie–Rinehart algebra over A, projective as an A-module, the map

i : L→ UA L,

is injective.

Corollary 2.21. If L is free as an A-module with basis {xi, i ∈ I}, the set

{xsii1x
s2
i2
· · ·xsrir : i1 < i2 < · · · < ir and si ≥ 0},

form an A-basis of UA L.

2.3 Left Hopf Algebroid Structure

An important field of study in Lie algebras, is the fact that the universal enveloping algebra

is a Hopf algebra. In the case of Lie–Rinehart algebras, the universal enveloping algebra

does not need to be a Hopf algebra, but it is a left Hopf algebroid. In this section we will

introduce the notions of Hopf algebras and left Hopf algebroids and we will give the universal

enveloping algebras each of the correspondent structures.

Definition 2.22. It is well known that a K-algebra A is a triple (A,mA, η), where mA : A⊗
A→ A, η : K → A and the associativity and the unitality properties follow, i.e. mA(mA ⊗
idA) = mA(idA ⊗mA) and mA(η ⊗ idA) = mA(idA ⊗ η) = idA. Analogously, one can say

that A is a K-coalgebra if it is a triple (A,∆, ε), such that ∆: A → A ⊗ A and ε : A → K

satisfying the coassociativity and the counitality properties

(∆⊗ idA)∆ = (idA ⊗∆)∆,

(idA ⊗ ε)∆ = (ε⊗ idA)∆ = idA.
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Definition 2.23. A K-bialgebra is a quintuple (A,mA, η,∆, ε), where (A,mA, η) is a K-

algebra and (A,∆, ε) is a K-coalgebra verifying the following equivalent conditions

(i) The maps mA and η are morphisms of K-coalgebras.

(ii) The maps ∆ and ε are morphisms of K-algebras.

Definition 2.24. Let now (H,mH , η,∆, ε) be a K-bialgebra. An endomorphism S : H → H

is called an antipode for H if

mH(S ⊗ idH)∆ = mH(idH ⊗ S)∆ = ηε.

A Hopf algebra is a K-bialgebra with an antipode.

Example 2.25. The universal enveloping algebra UL of a Lie algebra L is a Hopf algebra

with structure maps defined on generators in the following way

∆(x) = x⊗ 1 + 1⊗ x,

ε(x) = 0,

S(x) = −x,

for all x ∈ L.

Now we move to K-algebroids and Lie–Rinehart algebras.

Definition 2.26. Let A be a K-algebra, the opposite ring Aop is the same structure as A

but the product ab in Aop is defined by ba in A. We define the enveloping algebra of A as

Ae:=A⊗Aop.

Definition 2.27. An A-ring U is a triple (U,mU , η) where U is an Ae-module, mU : U ⊗A

U → U , u⊗ v → uv and η : A→ U are (A,A)-bimodule maps such that

mU (mU ⊗ idU ) = mU (idU ⊗mU ),

mU (η ⊗ idU ) = mU (idU ⊗ η).

These properties are the associativity and the unitality. It can be seen in [1] that the A-rings

U correspond bijectively to K-algebra homomorphisms

η : A→ U.

Definition 2.28. Dually to the notion of an A-ring is the concept of an A-coring. This

is, an A-coring C is a triple (C,∆, ε) where C is an (A,A)-bimodule (with left and right
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actions LA and RA) and ∆: C → C ⊗A C, ε : C → A are (A,A)-bimodule homomorphisms

such that

(∆⊗ idC)∆ = (idC ⊗∆)∆,

LA(ε⊗ idC)∆ = RA(idC ⊗ ε)∆ = idC .

These properties are the coassociativity and the counitality.

Given an Ae-ring U , described by a K-algebra map η : Ae → U , we can consider the

restrictions

s := η(−⊗ 1A) : A→ U,

t := η(1A ⊗−) : Aop → U.

We will call these maps source and target map of the Ae-ring. In this way, and Ae-ring may

be equally given by such a triple (U, s, t). Using the left Ae-module structure (a ⊗ ã, u) 7→
η(a⊗ ã)u on U , one considers

U ⊗A U : = U ⊗ U/span{η(1⊗ a)u⊗ u′ − u⊗ η(a⊗ 1)u′ : a ∈ A and u, u′ ∈ U}

= U ⊗ U/span{t(a)u⊗ u′ − u⊗ s(a)u′ : a ∈ A and u, u′ ∈ U}.

Definition 2.29. We will call the left Takeuchi product of the Ae-ring U with itself to the

K-submodule of U ⊗A U

U ×A U := {
∑
i

ui ⊗A u
′
i ∈ U ⊗A U :

∑
i

uit(a)⊗A u
′
i =

∑
ui ⊗A u

′
is(a) for all a ∈ A}.

Definition 2.30. A left A-bialgebroid is a K-module U that carries simultaneously the

structure of an Ae-ring (U, s, t) and a A-coring (U,∆, ε), subject to the following compati-

bility axioms:

1. We have an (A,A)-bimodule structure described by

a Bu C ã := η(a⊗ ã)u = s(a)t(ã)u

for a, ã ∈ A and u ∈ U . We will refer to this structure by writing BUC .

2. Considering the bimodule BUC , the coproduct ∆ is a K-algebra morphism taking

values in U ×A U .

3. For all a, ã ∈ A, u, u′ ∈ U , the counit ε has the properties

ε(s(a)t(ãu) = aε(u)ã,

ε(uu′) = ε
(
us(εu′)

)
= ε
(
ut(εu′)

)
.
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Observe that a left bialgebroid carries in total four A-module structure, because one also

has

a Iu J ã := uη(ã⊗ a) = us(ã)t(a)

and we will denote this situation by IUJ .

Definition 2.31. Let U be a left A-bialgebroid, we define the Galois map of U by

β : IU ⊗Aop UC → UC ⊗A BU, u⊗Aop v 7→ u(1) ⊗A u(2)v,

where u(1) and u(2) are the first and second components of ∆(u), and

IU ⊗Aop UC = U ⊗ U/span{a Iu⊗ v − u⊗ v C a : a ∈ A, u, v ∈ U}.

In this way, we will say that U is a left Hopf algebroid if β is a bijection.

Now we are in conditions to see the canonical left Hopf algebroid structure on UA L of

a Lie–Rinehart algebra L. The source and targets maps, are given by the inclusion of A in

UA L. In this way,

a Bu C ã := auã

We write UA L⊗U UA L := UA LC ⊗A B UA L, and UA L×U UA L := UA L×A UA L for the

Takeuchi product. We can define the coproduct on generators as

∆(x) = 1⊗U x+ x⊗U 1,

∆(a) = a⊗U 1,

which maps a ∈ A and x ∈ L into UA L ×U UA L and can be extended by the universal

property to a coproduct

∆: UA L→ UA L×U UA L ⊂ UA L⊗U UA L.

The counit is similarly given by extension of the anchor map α to UA L, more precisely,

by

ε(u) 7→ α(u)(1A),

so in particular ε(a) = a if a ∈ A and ε(x) = 0 if x ∈ L.
We write now UA L⊗rlUA L := I UA L⊗AopUA LC , and UA L×rlUA L := UA L×AopUA L.

We define on generators in UA L⊗rl UA L

a+ ⊗rl a− := a⊗rl 1

x+ ⊗rl x− := x⊗rl 1− 1⊗rl x.
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In this way, we define a map β−1(−⊗U1) : U → UA L⊗rlUA L. This map stay in UA L×rlUA L

which is an algebra through the product of UA L in the first and its opposite in the second

tensor factor. By universality we obtain a map UA → UA L×rl UA L ⊂ UA L⊗rl UA L, and

then β−1 is defined by

β−1(u⊗U v) = u+ ⊗rl u−v.

Since the map β−1 is well defined, UA L is a left Hopf algebroid.

Conversely, certain left bialgebroids give rise to Lie–Rinehart algebras:

Proposition 2.32. Let (U,A, s, t,∆, ε) be a left algebroid with A commutative and s ≡ t.

Therefore, the module P `U = {u ∈ U : ∆(u) = u⊗1 + 1⊗u} is a Lie–Rinehart algebra over

A.

Proof. We just have two remaining A-module structures on U , denoted by au := s(a)u and

ua := us(a). The coproduct is a map ∆: U → U ⊗U U , where we use again the same

notation as above. The natural Lie algebra structure is [u, u′] = uu′ − u′u, which is closed

in P `U . We have that ∆(au) = au⊗U 1 + 1⊗U au for u ∈ P `U , which is an A-submodule.

The anchor map is given by the Lie algebra action

α(u)(a) = ε(ua) =: u(a).

To see the last property, let a, b ∈ A and u, u′ ∈ U ,

([u, au′])(b) = ε
(
u(au′(b)

)
− au′

(
u(b)

)
= u(a)u′(b)− a([u, u′])(b)

= (u(a)u′)(b)− (a[u, u′])(b).

Since b was arbitrary, the proof is complete.

2.4 Lie–Rinehart Superalgebras

As in many algebraic and geometric structures, we have a definition of a Lie–Rinehart

superalgebra. We will give some examples of Lie–Rinehart superalgebras and we will also

give the definition of the universal enveloping superalgebra.

Definition 2.33. A superalgebra is a Z2-graded algebra, that is, a direct sum A = A0⊕A1

of two subspaces A0 and A1 that satisfy AiAj ⊂ Ai+j for all i, j ∈ Z2. We have a map

| · | : (A0 t A1)\{0} → Z2 which sends the elements of A0 to 0, and the elements of A1 to

1, and we can extend this map by linearity to the whole space A. We call the elements of

A0 tA1 homogeneous. We say that a superalgebra A is commutative if

yx = (−1)|x||y|xy, for all x, y homogeneous in A.
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A Lie superalgebra is a superalgebra whose product satisfies the conditions of super skew-

symmetry and super Jacobi identity,

[x, y] = −(−1)|x||y|[y, x],[
x, [y, z]

]
=
[
[x, y], z

]
+ (−1)|x||y|

[
y, [x, z]

]
,

for all x, y homogeneous in A. If L is a Lie superalgebra, an endomorphism D ∈ End(L)s is

called a derivation of degree s, for s ∈ Z2, if

D(xy) = D(x)y + (−1)s|x|xD(b), for all x, y homogeneous in A.

One verifies that DerK(L) = DerK(L)0 ⊕ DerK(L)1 is a Lie superalgebra.

Definition 2.34. Let A be a supercommutative, associative, unital K-superalgebra, and

let L be a Lie superalgebra over K which is also an A-module. Assume that we are given

αL : L → DerK(A) a morphism of Lie superalgebras (i.e. a morphism of Lie algebras such

that conserve the subspaces) and of A-modules. We say that L is a Lie–Rinehart superalgebra

over A if for all a ∈ A and x, y ∈ L, we have

[x, ay] = a[x, y](−1)|a||x| + αL(x)(a)y.

Example 2.35. Let A be a supercommutative, associative, unital superalgebra and let g

be a Lie superalgebra. Assume that there is a Lie superalgebra morphism α : g→ DerK(A).

The Lie superalgebra L = A⊗ g with Lie bracket

[a⊗ x, b⊗ y] = (−1)|x||b|ab⊗ [x, y] + aα(x)(b)⊗ y − bα(y)a⊗ x(−1)(|a|+|x|)(|b|+|y|),

where a, b ∈ A and x, y ∈ g, is a Lie–Rinehart superalgebra extending the map α to an

A-module morphism αL : L→ DerK(A).

We can define the universal enveloping superalgebra of a Lie–Rinehart superalgebra in

the same way as we did for Lie–Rinehart algebras.

Definition 2.36. Let L a Lie–Rinehart superalgebra over A. The universal enveloping

superalgebra, denoted by UA L, is the K-superalgebra generated by the symbols i(x) for

each x ∈ L and j(a) for each a ∈ A, satisfying

j(1) = 1,

j(ab) = j(a)j(b),

i(ax) = j(a)i(x),

i([x, y]) = i(x)i(y)− (−1)|x||y|i(y)i(x),

i(x)j(a) = (−1)|a||x|j(a)i(x) + j
(
x(a)

)
.
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As in the case of Lie–Rinehart algebras, it can be defined a filtration and the PBW

theorem is also true as we can see in [6].

Example 2.37. Let K = R and M a paracompact smooth supermanifold ([20]) over K.

Doing like in Example 2.5, with A = C∞(M), the superalgebra L = DerK
(
C∞(M)

)
is

a Lie–Rinehart superalgebra with anchor map the identity, and the universal enveloping

superalgebra is the superalgebra of differential operators over M.

Example 2.38. Let LA be a Lie–Rinehart algebra over A and let LB be a Lie–Rinehart

algebra over B. We define

LA⊗B = B⊗ LA ⊕A⊗ LB.

Then, LA⊗B is an A⊗B-module. We define now an A⊗B-module morphism αA⊗B : LA⊗B →
DerK(A⊗ B) by

αA⊗B(x)(a⊗ b) = αLA
(x)(a)⊗ b,

αA⊗B(y)(a⊗ b) = a⊗ αLB
(y)(−1)|a||y|,

for all a ∈ A, b ∈ B, x ∈ LA and y ∈ LB. We also define a Lie bracket in LA⊗B extending the

particular Lie brackets and [LA, LB] = 0. In this way, LA⊗B is a Lie–Rinehart superalgebra

over A⊗ B with anchor map αA⊗B.

2.5 Restricted Lie–Rinehart Algebras

In many cases when we study Lie algebras over a field of prime characteristic we are led to

consider a richer structure than an ordinary Lie algebra. In this section, K will be a field of

characteristic p prime.

Definition 2.39. A restricted Lie algebra (L, (−)[pL]) over a field K is a Lie algebra L

together with a map (−)[pL] : L→ L, called the p-map such that the following relations hold

kx[pL] = kpx[pL],

[x, y[pL]] =
[
[[x, y], y], · · · , y

]︸ ︷︷ ︸
p

,

(x+ y)[pL] = x[pL] + y[pL] +

p−1∑
i=1

si(x, y),

where isi(x, y) is the coefficient of λi−1 in adp−1
λx+y(x). The motivation of this definitions can

be found in [17].
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Let K be a field of characteristic p 6= 0, and A a unital K-algebra. If D ∈ DerK(A), it

follows the formula

Dp(ab) =

p∑
i=0

(
p

i

)
Di(a)Dp−i(b),

for all a, b ∈ A. Since the characteristic of K is p we get

Dp(ab) = aDp(b) +Dp(a)b,

which means that Dp ∈ DerK(A), so (DerK(A), (−)p) is a restricted Lie algebra. Moreover,

we can get the relation

(aD)p = apDp + (aD)p−1(a)D,

so we are naturally led to the following definition.

Definition 2.40. A restricted Lie–Rinehart algebra over A is a restricted Lie algebra over

K, (L, (−)[pL]), where L is a Lie–Rinehart algebra over A, the anchor map also conserves

the operation (−)[pL] (i.e. is a restricted Lie homomorphism), and the following relation

holds:

(ax)[pL] = apx[pL] + (ax)p−1(a)x,

for all a ∈ A and x ∈ L.

Example 2.41. As we have seen, DerK(A) is a restricted Lie–Rinehart algebra.

Example 2.42. Any restricted Lie algebra over K is a restricted Lie–Rinehart algebra over

K with trivial anchor map.

Example 2.43. If g is a restricted Lie algebra with a homomorphism of restricted Lie

algebras γ : g → DerK(A), then the transformation Lie–Rinehart algebra A ⊗ g can be

endowed with a restricted Lie–Rinehart algebra structure, with bracket

[a⊗ g, a′ ⊗ g′] := aa′ ⊗ [g, g′] + aγ(g)(a′)⊗ g′ − a′γ(g′)(a)⊗ g,

anchor map αL : L→ DerK(A),

αL(a⊗ g)(a′) = aγ(g)(a′)

and p-map

(a⊗ g)[pL] = ap ⊗ g[pL] −
(
aγ(g)

)p−1
(a)⊗ g,

where a, a′ ∈ A and g, g′ ∈ g.

Example 2.44. Let F : K be a purely inseparable field extension of exponent 1. Then,

there is a one-to-one correspondence between intermediate fields and restricted Lie–Rinehart

subalgebras of DerK(F ), seen as a restricted Lie–Rinehart algebra over F .
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Since a restricted Lie–Rinehart algebra is in particular a Lie–Rinehart algebra, one can

construct the universal enveloping algebra in the way of this chapter, and in [9] can be found

a variant of Corollary 2.21.

Theorem 2.45. Let L a restricted Lie–Rinehart algebra over A and free as an A-module.

If {xi, i ∈ I} is an A-basis of L, then the set

{zhi
i1
zh2
i2
· · · zhr

ir
xkii1x

k2
i2
· · ·xkrir }

where i1 < i2 < · · · ir, hi ≥ 0, 0 ≤ ki < p and zi = xpi − x
[pL]
i , is an A-basis of L.

Moreover, one can define an analogue of the universal enveloping algebra on restricted

Lie–Rinehart algebras.

Definition 2.46. Let (L, (−)[pL]) be a restricted Lie–Rinehart algebra, we define the re-

stricted universal enveloping algebra as the quotient UA L/I, where I is generated by the

elements {xpi − x
[pL]
i }. This algebra, follows the same universal property as the universal

enveloping algebra of Lie–Rinehart algebras, but with restricted morphisms.
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Chapter 3

Homology and Cohomology

3.1 Lie Algebras Homology

In this section we will introduce the Lie algebra homology and cohomology theory in order

to extend it to Lie–Rinehart algebras in the next section. The proofs of these classical results

can be found in [29].

Definition 3.1. Given a K-moduleM, the free Lie algebra on M is a Lie algebra F(M),

containing M as a submodule, which satisfies the following universal property: Every K-

module mapM→ L into a Lie algebra, extends uniquely to a Lie algebra map F(M)→ L.

In other words, as a functor F is left adjoint to the forgetful functor from Lie algebras to

modules

HomK−mod(M, L) ∼= HomLie(F(M), L).

Example 3.2. The free Lie algebra of the free K-module with one generator x, is the

1-dimensional abelian Lie algebra K. The free Lie algebra of the free K-module with two

generators {x, y} is the free K-module having an infinite basis of monomials

x, y, [x, y],
[
x, [x, y]

]
,
[
y, [x, y]

]
,
[
x, [x, [x, y]]

]
,
[
x, [y, [x, y]]

]
,
[
y, [y, [x, y]]

]
, . . .

Definition 3.3. The exterior algebra of an K-module N , is the graded K-algebra

ΛK(N ) := T (N )/I

where T (N ) is the tensor algebra and I is the ideal generated by the symbols n⊗ n for all

n ∈ N . We denote by ΛpK(N ) his object of degree p.

Definition 3.4. If L is a K-Lie algebra andM is a Lie module over L, we define the chain

complex

CLie
n (L,M) :=M⊗ ΛnK(L), n ≥ 0,

29
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with boundary map

∂ : CLie
n (L,M) −→ CLie

n−1(L,M),

defined by

∂
(
m⊗ (x1, . . . , xn)

)
=

n∑
i=1

(−1)(i−1) xim⊗ (x1, . . . , x̂i, . . . , xn)

+
∑
j<k

(−1)j+km⊗ ([xj , xk], x1, . . . , x̂j , . . . , x̂k, . . . , xn),

where x1, . . . , xn ∈ L,m ∈M.

In this way, the Lie homology is defined by

HLie
n (L,M) = Hn

(
CLie
n (L,M)

)
, n ≥ 0.

Definition 3.5. If L is a Lie algebra and M is a Lie module over L, we define now the

cochain complex

CnLie(L,M) := HomK(ΛnKL,M), n ≥ 0,

with coboundary map

δ : Cn−1
Lie (L,M) −→ CnLie(L,M),

defined by

(δf)(x1, . . . , xn) =

n∑
i=1

(−1)(i−1) xi
(
f(x1, . . . , x̂i, . . . , xn)

)
+
∑
j<k

(−1)j+k f([xj , xk], x1, . . . , x̂j , . . . , x̂k, . . . , xn),

where x1, . . . , xn ∈ L,m ∈M, f ∈ Cn−1(L,M).

In this way, the Lie cohomology is defined by

Hn
Lie(L,M) = Hn

(
CnLie(L,M)

)
, n ≥ 0.

Another way to see the Lie homology, is by the derived functors. If M is a L-module

which is K-projective, it can be seen in [29] that

HLie
n (L,M) ∼= TorULn (K,M),

Hn
Lie(L,M) ∼= ExtnUL(K,M).

where UL denotes the universal enveloping algebra of the Lie algebra L.
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Proposition 3.6. Let L = F(X) be the free Lie algebra on a free K-module generated by a

set X. Then

HLie
n (L,M) = 0, n > 1,

Hn
Lie(L,M) = 0, n > 1.

In addition, ifM = K, then HLie
0 (L,K) = H0

Lie(L,K) = 0 and

HLie
n (L,M) =

⊕
x∈X

K,

Hn
Lie(L,M) =

∏
x∈X

K.

Now we will describe the low homology of Lie algebras. By definition,

HLie
0 (L,M) =ML =

M
M◦ L

,

is the module of coinvariants ofM, whereM◦L means the K-submodule ofM generated

by mx, x ∈ L,m ∈M. In the same way, the invariant K-submodule ofM is

H0
Lie(L,M) =ML = {m ∈M | xm = 0 for all x ∈ L}.

Proposition 3.7. If M is any trivial L-module (i.e. xm = 0 for all m ∈ M and x ∈ L),
then HLie

1 (L,M) ∼= Lab ⊗M.

Definition 3.8. If M is a L-module, a derivation from L into M is a K-linear map

D : L→M such that the Leibniz formula holds

D([x, y]) = x(Dy)− y(Dx).

The set of all derivations from L intoM is denoted by DerK(L,M) and it is a K-submodule

of HomK(L,M).

An inner derivation is a derivation of DerK(L,M) which is defined by Dm(x) = xm.

They form K-submodule DerK(L,M) and it is denoted by IDerK(L,M).

Proposition 3.9. IfM is a L-module,

H1
Lie(L,M) ∼=

DerK(L,M)

IDerK(L,M)
.

Corollary 3.10. IfM is a trivial L-module,

H1
Lie(L,M) ∼= DerK(L,M) ∼= HomLie(L,M) ∼= HomK(Lab,M).
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Definition 3.11. Let L be a Lie algebra and letM be a L-module considered as an abelian

Lie algebra. An abelian extension of L byM is an short exact sequence

0 −→M i−−→ L′
∂−−→ L −→ 0,

where L′ is a Lie algebra, i is an K-linear map.

Proposition 3.12. Let L a Lie algebra and M a L-module. There is a one-to-one corre-

spondence between H2
Lie(L,M) and abelian extensions of L byM. In addition, the extension

0 −→M −→ LoM−→ L −→ 0

represents the 0 ∈ H2
Lie(L,M).

Definition 3.13. A central extension of a Lie algebra L is a short exact sequence

0 −→ I
i−−→ E

p−−→ L −→ 0,

where we identify I with Ker p, and KerP ⊂ Z(E) = {x ∈ E : [x, y] = 0 for all y ∈ E}.
In this way, an extension of L is an surjective Lie homomorphism p : E → L such that

Ker p ⊂ Z(E). If p : E → L and p′ : E′ → L, a homomorphism from p to p′ is a commutative

diagram of the form

E
f //

p �� ��?
??

??
??

E′

p′~~~~~~
~~

~~
~~

L

A central extension u : L → L is called universal if there exists a unique homomorphism from

u to any other central extension of L. If L has a central extension, if follows immediately

that is unique.

Theorem 3.14. A Lie algebra L has a universal central extension if and only if L is

perfect (i.e. L = [L,L]). In this case, if u : L → L is the central extension, we have that

Ker u = HLie
2 (L,K).

3.2 Lie–Rinehart Algebras Homology

Now we will generalize the previous section to Lie–Rinehart algebras.

Definition 3.15. We recover from [5] the definition of the free Lie–Rinehart algebra. Let

Amod/DerK(A) be the category of K-linear maps ψ : M → DerK(A) where M is a K-

module. A morphism ψ → ψ1 in Amod/DerK(A) is a K-linear map f : M→ N such that

ψ = ψ1f . We have the functor

U : LRAK → Amod/DerK(A),
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which assigns αL : L→ DerK(A) to a Lie–Rinehart algebra L. We construct the functor

FR: Amod/DerK(A)→ LRAK,

as follows. Let ψ : M→ DerK(A) be aK-linear map. We let F(M) be the free LieK-algebra

generated byM. Then we have the unique LieK-algebra homomorphism F(M)→ DerK(A)

which extends the map ψ, which is still denoted by ψ. Now we can apply the construction

from Example 1.8 to get a Lie–Rinehart algebra structure on A⊗ F(M). We let FR(ψ) be

this particular Lie–Rinehart algebra and we call it the free Lie–Rinehart algebra generated

by ψ. In this way, we obtain the functor FR, which is left adjoint to U ,

Hom
Amod/DerK(A)(ψ, αL) ∼= HomLRAK

(FR(ψ), L).

Definition 3.16. If L is a Lie–Rinehart algebra over A and M is a right (A, L)-module

over, we define the chain complex

CA
n (L,M) :=M⊗A ΛnA(L), n ≥ 0,

with boundary map

∂ : CA
n (L,M) −→ CA

n−1(L,M),

defined by

∂
(
m⊗A (x1, . . . , xn)

)
=

n∑
i=1

(−1)(i−1)mxi ⊗A (x1, . . . , x̂i, . . . , xn)

+
∑
j<k

(−1)j+km⊗A ([xj , xk], x1, . . . , x̂j , . . . , x̂k, . . . , xn),

where x1, . . . , xn ∈ L,m ∈M.

In this way, the Lie–Rinehart homology is defined by

HRin
n (L,M) = Hn

(
CA
n (L,M)

)
, n ≥ 0.

Definition 3.17. If L is a Lie–Rinehart algebra andM is a left (A, L)-module, we define

now the cochain complex

CnA(L,M) := HomA(ΛnAL,M), n ≥ 0,

with coboundary map

δ : Cn−1
A (L,M) −→ CnA(L,M),

defined by

(δf)(x1, . . . , xn) =

n∑
i=1

(−1)(i−1) xi
(
f(x1, . . . , x̂i, . . . , xn)

)
+
∑
j<k

(−1)j+k f([xj , xk], x1, . . . , x̂j , . . . , x̂k, . . . , xn),
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where x1, . . . , xn ∈ L,m ∈M, f ∈ Cn−1
A (L,M).

In this way, the Lie–Rinehart cohomology is defined by

Hn
Rin(L,M) = Hn

(
CnA(L,M)

)
, n ≥ 0.

Another way to see the Lie cohomology, is by the derived functor Ext. If M is a left

(A, L)-module which is A-projective, it can be seen in [14] that

Hn
Rin(L,M) ∼= ExtnUA L

(A,M).

where UA L denotes the universal enveloping algebra of the Lie–Rinehart algebra L.

Example 3.18. If A = K, then we recover the classical definition of the Lie algebra

homology and cohomology. For a general A by forgetting the A-module structure one obtains

the canonical homomorphisms

HLie
n (L,M)→ HRin

n (L,M), Hn
Rin(L,M)→ Hn

Lie(L,M).

On the other hand if A is a smooth commutative algebra, then Hn
Rin(DerK(A),A) is isomor-

phic to the de Rham cohomology of A (this results can be found in [14] and [28]).

Lemma 3.19. Let g be a K-Lie algebra acting on a commutative algebra A by derivations

and let L be the transformation Lie–Rinehart algebra of (g,A) defined in Example 1.8. Then

for any Lie–Rinehart (A, L)-module M we have the canonical isomorphisms of complexes

CA
n (L,M) ∼= CLie

n (g,M), CnA(L,M) ∼= CnLie(g,M) and in particular the isomorphisms

HRin
n (L,M) ∼= HLie

n (g,M),

Hn
Rin(L,M) ∼= Hn

Lie(g,M).

Proof. Since L = A⊗ g we have the isomorphisms

ΛnAL⊗AM∼= ΛnAg⊗AM

HomA(ΛnAL,M) ∼= Hom(Λng,M)

and the proof is straightforward.

Proposition 3.20. Let L be a free Lie–Rinehart algebra generated by ψ : N → DerK(A)

and letM be any Lie–Rinehart (A, L)-module. Then

HRin
n (L,M) = 0, n > 1,

Hn
Rin(L,M) = 0, n > 1.
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Proof. By construction L is a transformation Lie–Rinehart algebra of (F(N ),A). Thus

we can apply Lemma 3.19 to get the isomorphisms HRin
n (L,M) ∼= HLie

n (F(N ),M) and

Hn
Rin(L,M) ∼= Hn

Lie(F(N ),M) so the proof follows by Proposition 3.6.

Now we will describe the low homology of Lie–Rinehart algebras. By definition,

HRin
0 (L,M) =ML =

M
M◦ L

,

is the module of coinvariants ofM, whereM◦L means the K-submodule ofM generated

by mx, for all m ∈M and x ∈ L. In the same way, the invariant K-submodule ofM is

H0
Rin(L,M) =ML = {m ∈M | mx = 0 for all x ∈ L}.

Proposition 3.21. IfM is any trivial right (A, L)-module, then

HRin
1 (L,M) ∼=

M⊗A L

M⊗A {L,L}
∼= Lab ⊗M.

Definition 3.22. IfM is a left (A, L)-module, we denote by DerA(L,M) the A-linear maps

D : L→M which are derivations from the Lie K-algebra L toM. In other words, the map

D must satisfy

D(ax) = aD(x)D([x, y]) = x(Dy)− y(Dx).

for all a ∈ A and x, y ∈ L.
An inner derivation is a derivation of DerA(L,M) defined by Dm(x) = xm. The K-

submodule of inner derivations is denoted by IDerA(L,M) and it is a K-submodule of

DerA(L,M).

Proposition 3.23. IfM is a left (A, L)-module,

H1
Rin(L,M) ∼=

DerA(L,M)

IDerA(L,M)
.

Corollary 3.24. IfM is a trivial left (A, L)-module,

H1
Rin(L,M) ∼= DerA(L,M) ∼= HomRin(L,M) ∼= HomA(Lab,M).

Definition 3.25. Let L be a Lie–Rinehart A-algebra and letM a left Lie-Rinehart (A, L)-

module. An abelian extension of L byM is an exact sequence

0 −→M i−−→ L′
∂−−→ L −→ 0,

where L′ is a Lie–Rinehart algebra over A and ∂ is a Lie–Rinehart algebra homomorphism.

Moreover, i is an A-linear map and the following identities hold

[i(m), i(n)] = 0,

[i(m), x′] =
(
∂(x′)

)
(m), m, n ∈M, x′ ∈ L′.
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The classification of abelian extensions can be found in [14].

Theorem 3.26. If L is A-projective, then the cohomology H2
Rin(L,M) classifies the abelian

extensions

0 −→M −→ L′ −→ L −→ 0

of L byM in the category of Lie–Rinehart algebras which split in the category of A-modules.

Moreover, the extension

0 −→M −→ LoM−→ L −→ 0

represents the 0 ∈ H2
Rin(L,M).



Chapter 4

Universal Central Extensions and

Tensor Product

In this chapter we will give the construction of the Universal Central Extension of a Lie–

Rinehart algebra and we will give a definition of the non-abelian tensor product to end

relating these two objects.

4.1 Central Extensions

Definition 4.1. An extension of a Lie–Rinehart algebra L is a short exact sequence

0 −→ I
i−−→ E

p−−→ L −→ 0,

where I, E and L are Lie–Rinehart algebras and i, p are Lie–Rinehart homomorphisms.

Since i : I → i(I) = Ker p is an isomorphism we shall identify I and i(I). In other words,

an extension of L is an surjective Lie–Rinehart homomorphism p : E → L. If p : E → L

and p′ : E′ → L are two extensions of L, a homomorphism from p to p′ is a commutative

diagram in LRAK of the form

E
f //

p �� ��?
??

??
??

E′

p′~~~~~~
~~

~~
~~

L

In particular, one have the following relations

Ker f ⊂ f−1(Ker p′) = Ker p,

E′ = f(E) + Ker p′.

37
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Definition 4.2. Given an extension, one says that splits if there exists a Lie–Rinehart

homomorphism s : L→ E, called splitting homomorphism, such that ps = 1L. In this case,

E = I⊕s(L) and s : L→ s(L) is an isomorphism with inverse f |s(L). Moreover, K ' IoL,
the semidirect product. In this way, semidirect products and split exact sequences are in a

one-to-one correspondence. We point out that not every extension splits. We shall say that

an extension splits uniquely whenever the splitting morphism is unique.

Definition 4.3. A central extension of L is an extension such that Ker p ⊂ ZA(E). In

particular, if p : E p
// // L

s
tt is a split central extension is a direct product of K-Lie

algebras E = Ker p× L, which is also a Lie–Rinehart algebra.

Proposition 4.4. If L is A-projective, then H2
Rin(L, I) classifies the central extensions

0 −→ I −→ E −→ L −→ 0

of L by I.

Proof. Note that, if I is a trivial left Lie–Rinehart (A, L)-module, then an abelian extension

of L by I is a central extension, and so the assertion follows by Proposition 3.26.

Definition 4.5. A Lie–Rinehart algebra over A is said perfect if L = {L,L}. A central

extension E of L is called a covering if E is perfect and in this case, L is also perfect.

Definition 4.6. A central extension u : L −−−� L is called universal if there exists a unique

homomorphism from u to any other central extension of L. From this property it immediately

follows that two universal central extensions of L are isomorphic as extensions.

Lemma 4.7. (central trick) Let p : E −−−� L be a central extension.

(a) If p(x) = p(x′) and p(y) = p(y′) then [x, y] = [x′, y′] and for every a ∈ A, x(a) = x′(a).

(b) If the following diagram commutes in LRAK,

P
g

//
f //

E
p // // L

then the restriction of both f and g to {P, P} agree; i.e., f |{P,P} = g|{P,P}.

Proof. (a) Since p(x) = p(x′), we have that x′ = x+ z for some z ∈ Ker p ⊂ ZA(E), and the

same for y′ = y + z′. In this way, [x′, y′] = [x + z, y + z′] = [x, y] since z, z′ ∈ ZA(E). In

addition, since p is a Lie–Rinehart homomorphism, the action on DerK(A) must be preserved

so x(a) = x(a′) for all a ∈ A.

(b) Since p
(
f(x)

)
= p
(
g(x)

)
, using part (a), we have

f(a[x, y]) = a[f(x), f(y)] = a[g(x), g(y)] = g(a[x, y]).
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Lemma 4.8. Let L be perfect and p : E −−−� L be a central extension.

(a) E = {E,E}+ Ker p, and p′ = p{E,E} : {E,E} −−−� L is a covering.

(b) ZAE = p−1(ZA L) and p(ZAE) = ZA L.

(c) If f : L −−−�M is a central extension then so is fp : E −−−�M .

(d) If f : C −−−� L is a covering and

E
g //

p �� ��?
??

??
??

C

f������
��

��
�

L

a morphism of extensions, then g : E −−−� C is a central extension. In particular, g

is surjective.

Proof. (a) Since p({E,E}) = {L,L} = L, it follows that E = {E,E} + Ker p. Moreover,

p{E,E} is surjective so it is a covering.

(b) Let z ∈ ZA(E). For every a ∈ A we have that [az,E] = 0, so 0 = [p(az), p(E)] =

[ap(z), L] then p(z) ∈ ZA(L) and in conclusion z ∈ p−1
(
ZA(L)

)
. Conversely, let z ∈

p−1
(
ZA(L)

)
, for every a ∈ A we have that p([az,E]) = [ap(z), L] = 0 so [az,E] ⊂ Ker p ⊂

ZA(E). Since [az,E] = [az, {E,E} + Ker p] = [az, {E,E}] we just have to check that

[az, {E,E}] is zero. Therefore, by the Jacobi identity and since z(b) = 0 for all b ∈ A,[
az, b[x, y]

]
= b
[
az, [x, y]

]
= b
[
x, [az, y]

]
+ b
[
y, [x, az]

]
= 0.

(c) The morphism fp is composition of surjective maps, so it is surjective. Moreover,

Ker fp = p−1(Ker f) ⊂ p−1
(
ZA(L)

)
= ZA(E).

(d) By Lemma 4.7(b) we have that C = {C,C} = {g(E) + Ker f, g(E) + Ker f} =

{g(E), g(E)} = g({E,E}), so it is surjective. In addition it is central since Ker g ⊂ Ker p.

Corollary 4.9. Let L a Lie–Rinehart algebra. If L/ZA L is perfect, then ZA(L/ZA L) = 0.

Proof. We are in conditions to apply the second formula of Lemma 4.8(b) to the canonical

map p : L −−−� L/ZA(L). Then, ZA

(
L/ZA(L)

)
= p
(
ZA(L)

)
= 0.

In particular for a perfect L this corollary says that L/ZA(L) is the “smallest” central

quotient.

Lemma 4.10. (Pullback Lemma) Let c : N −−−�M be a central extension and f : L→M

a morphism of Lie–Rinehart algebras, then,

P := {(x, n) ∈ L×DerK(A) N : f(x) = c(n)}
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is a Lie–Rinehart algebra and pL : P → L, (x, n) 7→ x, is a central extension. This extension

splits if and only if there exists a (unique) Lie–Rinehart morphism h : L → N such that

ch = f .

P
pN //

pL
����

N

c
����

L
f

//
h

>>
s

HH

M

Proof. The pullback P inherit the canonical Lie–Rinehart algebra structure, and pL is a

central extension since it is clearly surjective and if (x, n) ∈ Ker pL then x = 0 and c(n) = 0,

so [a(0, n), (y,m)] = ([0, y], [an,m]) = 0 for all y ∈ L and m ∈ N .

If pL splits we define h = pN ◦ s. Conversely, given h : L→ N we define s : L→ P such

that x 7→
(
x, h(x)

)
. We will see now that s is a Lie–Rinehart algebra morphism checking

that it is a Lie morphism, an A-modules morphism and the anchor map is conserved:

• s([x, y]) =
(
[x, y], h([x, y])

)
=
[(
x, h(x)

)
,
(
y, h(y)

)]
= [s(x), s(y)],

• s(ax) =
(
ax, h(ax)

)
= a

(
x, h(x)

)
= as(x),

• s(x)(a) =
(
x, h(x)

)
(a) = h(x)(a),

for all a ∈ A and x, y ∈ L.

Theorem 4.11. (characterization of universal central extensions) Given a Lie–

Rinehart algebra L, there are equivalent:

(1) Every central extension L′ −−−� L splits uniquely.

(2) 1L : L −−−� L is a universal central extension.

If u : L −−−�M is a central extension, then (1) and (2) are equivalent to

(3) u : L −−−�M is a universal central extension of M . In this case,

(a) both L and M are perfect and

(b) ZA L = u−1(ZA L) = ZAM .

Proof. Clearly 1L is a central extension so to see that (1) is equivalent to (2), it is enough

to see that every central p : L′ −−−� L splits uniquely if and only if there exists a unique

homomorphism f : L −−−� L′ such that pf = 1L, which is the definition of 1L being a

universal central extension.

Suppose now that (3) holds. Let L×L/{L,L} be the product as Lie algebras over K. It

inherits also the A-module structure, since {L,L} is also an A-module. The only problem
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is the equality relating the A-module structure and the Lie algebra, but we will see that in

this case it is also conserved, so it is a Lie–Rinehart algebra over A.

[(x, y + {L,L}), a(x′, y′ + {L,L})] = (a[x, x′], 0) + (x(a)x′, 0),

and

a[(x, y + {L,L}), (x′, y′ + {L,L})] = (a[x, x′], 0),

(x, y + {L,L})(a)(x′, y′ + {L,L}) = (x(a)x′, x(a)y′ + {L,L})

= (x(a)x′, [x, ay′]− a[x, y′] + {L,L})

= (x(a)x′, 0).

Now we can define the central extension ū : L× L/{L,L} −−−�M , and two maps f and g

L
u //

g %%KKKKKKKKKKK
f

%%KKKKKKKKKKK M

L× L/{L,L}
ū

88rrrrrrrrrr

where f(x) = (x, x+ {L,L}) and g(x) = (x, 0). Since u is universal, f and g must be equal,

so L/{L,L} = 0 so L is perfect. By the surjectivity of u, M is perfect too. The assertion

(b) is an immediate consequence of Lemma 4.8(b).

We can prove now that (3)⇒ (1), since given a central extension f : L′ −−−�M we can

apply Lemma 4.8(c) so uf is a central extension too. By the universality of u, there exists

f : L −−−� L′ such that ufg = u and by Lemma 4.7(b) we have that fg = 1L.

To see that (1)⇒ (3), given a central extension f : N −−−�M we construct as in Lemma

4.10 the central extension pL : P −−−� L, which by assumption splits uniquely. Therefore

by Lemma 4.10 there exists a unique Lie–Rinehart morphism h : L −−−� N so u : L −−−�M

is a universal central extension.

Corollary 4.12. Let f −−−� E → L and g −−−� L → M be central extensions. Then

gf : E →M is a universal central extension if and only if f is a universal central extension.

Proof. Since E is perfect, we can apply Lemma 4.8(c) so the extension gf is central. Hence,

f is universal if and only if 1E : E −−−� E is universal, if and only if gf is universal.

Corollary 4.13. Let L and L′ be perfect Lie–Rinehart algebras, with universal central

extensions u : L −−−� L and u′ : L′ −−−� L′ respectively. Then

L/ZA(L) ∼= L′/ZA(L′) ⇐⇒ L ∼= L′.
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Proof. Given the diagram

L u //

φ

��

L
π // L/ZA(L)

ϕ

��
L′ u′

// L′
π′

// L/ZA(L′),

we know that φ exists and is an isomorphism if and only if ϕ exists and is an isomorphism.

By Corollary 4.12, the maps πu and π′u′ are universal central extensions and since L/ZA(L)

is isomorphic to L′/ZA(L′), by the uniqueness of the universal central extension, L ∼= L′.
Conversely, by Corollary 4.9 L/ZA(L) is centreless. By Lemma 4.8 (b) ZA(L) = Ker(πu) and

ZA(L′) = Ker(π′u′). Therefore, Ker(π′u′φ) = φ−1
(
Ker(π′u′)

)
= φ−1

(
ZA(L′)

)
= ZA(L) =

Ker(πu). Since πu and π′u′φ are surjective, ϕ exists and is an isomorphism.

4.2 The Universal Central Extension

In this section, we will prove that if L is a perfect Lie–Rinehart algebra over A it has a

universal central extension, and we will give it explicitly.

Let L be a Lie–Rinehart algebra over A. We denote by MAL the A-submodule of

A⊗K L⊗K L spanned by the elements of the form

1. a⊗ x⊗ x

2. a⊗ x⊗ y + a⊗ y ⊗ x

3. a⊗ x⊗ [y, z] + a⊗ y ⊗ [z, x] + a⊗ z ⊗ [x, y]

4. a⊗ [x, y]⊗ [x′, y′] + [x, y](a)⊗ x′ ⊗ y′ − 1⊗ [x, y]⊗ a[x′, y′]

with x, x′, y, y′, z ∈ L and a ∈ A, and we define

uceAL := A⊗K L⊗K L/MAL.

writing (a, x, y) := a⊗ x⊗ y +MAL ∈ uceAL.

We recall that by construction, the following identities hold in uceA:

1. (a, x, y) = −(a, y, x),

2. (a, x, [y, z]) + (a, y, [z, x]) + (a, z, [x, y]) = 0,

3. (1, [x, y], a[x′, y′]) = (a, [x, y], [x′, y′]) + ([x, y](a), x′, y′).
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The map of A-modules A ⊗K L ⊗K L → L, determined by (a, x, y) 7→ a[x, y], vanishes

on MAL so it descends to a linear map

u : uceAL→ L.

It is a tedious but straightforward calculation to check that uceAL is a Lie algebra with

product

[(a, x, y), (a′, x′, y′)] := (aa′, [x, y], [x′, y′]) + (a[x, y](a′), x′, y′)− ([x′, y′](a)a′, x, y),

In addition, it is clearly an A-module, so defining the anchor map as

(a, x, y)(b) := a[x, y](b),

we check that uceAL is a Lie–Rinehart algebra watching if it follows the identity relating

both structures:

[(a, x, y), b(a′, x′, y′)] = (aa′b, [x, y], [x′, y′]) + (a[x, y](a′b), x′, y′)− ([x′, y′](a)a′b, x, y)

= b(aa′, [x, y], [x′, y′]) + b(a[x, y](a′), x′, y′)− b([x′, y′](a)a′, x, y) + (aa′[x, y](b), x′, y′)

= b[(a, x, y), (a′, x′, y′)] + a[x, y](b)(a′, x′, y′).

Moreover, it is easy to check that the map u : uceAL −−−� {L,L} is a central extension

of {L,L}. Now let f : L → M a Lie–Rinehart algebra homomorphism. Let MAM ∈ A ⊗K
M ⊗KM defined analogously to MAL. The map 1A⊗K f ⊗K f : MAL→MAM induces an

A-linear map

uceA(f) : uceAL→ uceAM, (a, x, y) 7→
(
a, f(x), f(y)

)
.

We want to check that uceA(f) is a Lie–Rinehart algebra morphism, but since the anchor

map is preserved by f , we have that

a[x, y](a′) = f(a[x, y])(a′) = a[f(x), f(y)](a′),

so it follows that

uceA(f)([(a, x, y), (a′, x′, y′)])

=
(
aa′, f([x, y]), f([x′, y′])

)
+
(
a[x, y](a′), f(x′), f(y′)

)
−
(
[x′, y′](a)a′, f(x), f(y)

)
= [uceA(f)(a, x, y), uceA(f)(a′, x′, y′)].

Moreover, the following diagram commutes by construction

uceAL

uL

��

uceA(f) // uceAM

uM

��
L

f
// M.
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Proposition 4.14. Let f : L → M be a morphism of Lie–Rinehart algebras and suppose

that g : M ′ →M is a central extension. Then there exists a homomorphism f : uceAL→M ′,

making the following diagram commutative

uceAL

u

��

f // M ′

g

��
L

f
// M.

The map f is uniquely determined on {uceAL, uceAL} by the commutativity of the diagram.

Proof. Let s : M →M ′ be a section of g in Set. The map s may not be linear but we know

that s(km) − ks(m) ∈ Ker g ⊂ ZA(M ′) and s(m + n) − s(m) − s(n) ∈ Ker g ⊂ ZA(M ′) for

k ∈ K and m,n ∈M . Using this, we can say that the map

A× L× L f̄−−→M ′

(a, x, y) 7−−−→ a[sf(x), sf(y)],

is bilinear, since

a[sf(kx), sf(y)] = a[sf(kx)− ksf(x) + ksf(x), sf(y)] = a[ksf(x), sf(y)],

a[s
(
f(x+ y)

)
, sf(z)] = a[s

(
f(x) + f(y)

)
− s
(
f(x)

)
− s
(
f(y)

)
+ s
(
f(x)

)
, sf(z)]

= a[sf(x), sf(z)] + a[sf(y), sf(z)].

By the universal property of tensor product, f̄ defines a unique map between A⊗KL⊗KL and

M ′. In addition, the map is zero in MAL, so it can be extended to f : uceAL→M ′, making

the diagram commutative. This map conserves the anchor map because the section s must

conserve it too. Using the property that a[x, y](a′) = f(a[x, y])(a′) = a[f(x), f(y)](a′), it

follows immediately that f is a Lie algebra homomorphism hence it is a Lie–Rinehart algebra

homomorphism, that makes the diagram commutative. The uniqueness in {uceAL, uceAL}
follows from Lemma 4.7(b).

Theorem 4.15. Let L be a perfect Lie–Rinehart algebra. Supposing that A has a right

(A, L)-module structure, then

0 −→ HRin
2 (L,A) −→ uceAL

u−−→ L −→ 0

is a universal central extension of L.

Proof. It can be seen that uceA({L,L}) ⊂ {uceAL, uceAL} ⊂ uceAL. Thus when L is perfect,

{uceAL, uceAL} = uceAL, so applying Proposition 4.14 for every central extension f : M −−−�
L we have a unique map f : uceAL→M making the diagram commutative. In other words,

uceAL is the universal central extension of L.
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4.3 Non-abelian Tensor Product

In Lie algebras, the non-abelian tensor product was introduced by Ellis in [10]. We will give

first the definition in Lie algebras and then we will generalize it to Lie–Rinehart algebras,

finding some properties and relating it to the universal central extension.

Definition 4.16. Let L,M be K-Lie algebras. By an action of L onM , we mean a K-linear

map, L×M →M , (x,m) 7→ xm, satisfying

[x,y]m = x(ym)− y(xm), x[m,n] = [xm,n] + [m,x n],

for all x, y ∈ L and m,n ∈M .

For example, if L is a subalgebra of some Lie algebra L and M is an ideal of L then the

bracket in L yields an action of L on M .

Definition 4.17. If we have an action of L on M and an action of M on L, for any

Lie–Rinehart algebra L we call a K-bilinear function f : L×M → L a Lie pairing if

1. f([x, y],m) = f(x, ym)− f(y, xm),

2. f(x, [m,n]) = f(nx,m)− f(mx, n),

3. f
(m
x), (yn)

)
= −[f(x,m), f(y, n)],

for all x, y ∈ L and m,n ∈M .

We say that a Lie pairing f : L × M → L is universal if for any other Lie pairing

g : L ×M → L′ there is a unique Lie homomorphism ϕ : L → L′ making commutative the

diagram:

L×M
f //

g
((PPPPPPPPPPPPP L

ϕ

��
L′.

The Lie algebra L is unique up to isomorphism which we will describe as the non-abelian

tensor product of L and M .

Definition 4.18. Let L and M be a pair of Lie algebras together with an action of L on M

and an action of M on L. We define the non-abelian tensor product of L and M , denoted

by L⊗M , as the Lie algebra spanned as an K-module by the symbols x⊗m, and subject

only to the relations:

1. k(x⊗m) = kx⊗m = x⊗ km,
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2. x⊗ (m+ n) = x⊗m+ x⊗ n,
(x+ y)⊗m = x⊗m+ y ⊗m,

3. [x, y]⊗m = x⊗ ym− y ⊗ xm,

x⊗ [m,n] = nx⊗m− mx⊗ n,

4. [(x⊗m), (y ⊗ n)] = −(mx⊗ yn)),

for every k ∈ K, x, y ∈ L and m,n ∈M .

Theorem 4.19. Given a perfect Lie algebra L, the tensor product L ⊗ L where the action

of L on L is the Lie bracket, is the universal central extension of L, and hence, H2(L,K)

is isomorphic to the kernel of the map L⊗ L→ L.

Now we generalize this results to Lie–Rinehart algebras.

Definition 4.20. Let L,M be Lie–Rinehart algebras. By an action of L on M , we mean

an K-linear map, L×M →M , (x,m) 7→ xm, satisfying

1. x(am) = a(xm) + x(a)m,

2. [x,y]m = x(ym)− y(xm),

3. x[m,n] = [xm,n] + [m,x n],

for all a ∈ A, x, y ∈ L and m,n ∈M .

For example, if L is a subalgebra of some Lie–Rinehart algebra L and M is an ideal of

L then the bracket in L yields an action of L on M .

Definition 4.21. If we have an action of L on M and an action of M on L, for any Lie–

Rinehart algebra L we call a K-bilinear function f : L ×M → L a Lie–Rinehart pairing

if

1. αL
(
f(x,m)

)
= [αL(x), αM (m)],

2. f([x, y],m) = f(x, ym)− f(y, xm),

3. f(x, [m,n]) = f(nx,m)− f(mx, n),

4. f
(
a(mx), b(yn)

)
= −ab[f(x,m), f(y, n)]− a[αL(x), αM (m)](b)f(y, n)

+ [αL(y), αM (n)](a)bf(x,m),

for all a, b ∈ A, x, y ∈ L and m,n ∈M .
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Definition 4.22. We say that a Lie–Rinehart pairing f : L×M → L is universal if for any

other Lie–Rinehart pairing g : L ×M → L′ there is a unique Lie–Rinehart homomorphism

ϕ : L → L′ making commutative the diagram:

L×M
f //

g
((PPPPPPPPPPPPP L

ϕ

��
L′.

The Lie–Rinehart algebra L is unique up to isomorphism which we will describe as the

non-abelian tensor product of L and M .

Definition 4.23. Let L and M be a pair of Lie–Rinehart algebras together with an action

of L on M and an action of M on L. We define the non-abelian tensor product of L and

M in LRAK, L ⊗M , as the Lie–Rinehart algebra over A spanned as an A-module by the

symbols x⊗m, and subject only to the relations:

1. k(x⊗m) = kx⊗m = x⊗ km,

2. x⊗ (m+ n) = x⊗m+ x⊗ n,
(x+ y)⊗m = x⊗m+ y ⊗m,

3. [x, y]⊗m = x⊗ ym− y ⊗ xm,

x⊗ [m,n] = nx⊗m− mx⊗ n,

4. [a(x⊗m), b(y ⊗ n)] = −ab(mx⊗ yn) + aα(x⊗m)(b)(y ⊗ n)− α(y ⊗ n)(a)b(x⊗m),

for every k ∈ K, a, b ∈ A, x, y ∈ L and m,n ∈ M . Here the map α : L ⊗M → DerK(A) is

given by α
(
a(x⊗m)

)
:= a[αL(x), αM (m)].

This way, the map f : L × M → L ⊗ M which sends (x,m) to x ⊗ m is a universal

Lie–Rinehart pairing by construction.

Definition 4.24. Two actions L ×M → M and M × L → L are said to be compatible if

for all x, y ∈ L and m,n ∈M ,

1. −αL(mx) = αM (xm) = [αL(x), αM (m)],

2. (mx)n = [n, xm],

3. (xm)y = [y,mx],

for all x, y ∈ L and m,n ∈M .
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This is the case, for example, if L and M are both ideals of some Lie–Rinehart algebra

and the actions are given by multiplication. We can see another example of compatible

actions when ∂ : L → N and ∂′ : M → N are crossed modules. In this case, L and M act

on each other via the action of N . These actions are compatible.

From this point on we shall assume that all actions are compatible.

Proposition 4.25. Let µ : L ⊗M → L and ν : L ⊗M → M the homomorphisms defined

on generators by µ
(
a(x ⊗ m)

)
= −a(mx) and ν

(
a(x ⊗ m)

)
= a(xm) are Lie–Rinehart

homomorphisms and the following diagram is commutative:

L⊗M ν //

µ

��

α

))RRRRRRRRRRRRR M

αM

��
L αL

// DerK(A).

We can relate the Lie–Rinehart tensor product L⊗M with the tensor product of L and

M as an A-module. We will denote it by L ⊗
mod

M the K-module and A-module generated

by the symbols x⊗m subject to the relations

1. k(x⊗m) = kx⊗m = x⊗ km,

2. x⊗ (m+ n) = x⊗m+ x⊗ n,
(x+ y)⊗m = x⊗m+ y ⊗m,

for every k ∈ K, x, y ∈ L and m,n ∈M .

Proposition 4.26. The canonical map L ⊗
mod

M → L⊗M is a A-module homomorphism and

is surjective. In addition, if L and M act trivially on each other, there is an isomorphism

of A-modules:

L⊗M ∼= Lab ⊗
mod

Mab.

Proof. If L acts trivially on M we have that x(a)m = 0 for a ∈ A, x ∈ L and m ∈M . This

means that

a[x, y]⊗m = x⊗ a(ym) + x⊗ y(a)m− ay ⊗ xm− x(a)y ⊗m = 0

being straightforward the isomorphism.

Proposition 4.27. The Lie–Rinehart algebras L⊗M and M ⊗ L are isomorphic.

Proof. The map f : L × M → M ⊗ L which sends (x,m) → m ⊗ x is a Lie–Rinehart

pairing, then by the universal property of L ⊗M there is a Lie–Rinehart homomorphism

L ⊗M → M ⊗ L. In a similar way, we can construct the inverse M ⊗ L → L ⊗M and

establish an isomorphism.
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Proposition 4.28. Given a short exact sequence of Lie–Rinehart algebras

0 // L
f // M

g // N // 0

and let P be a Lie–Rinehart algebra which acts compatibly on L, M and N , and the Lie–

Rinehart algebras L,M,N also act compatibly on P . In addition, the Lie–Rinehart mor-

phisms f, g conserve these actions, i.e., f(pm) = pf(m) and mp = f(m)p. In this situation,

the following sequence is exact

L⊗ P
f⊗1 // M ⊗ P

g⊗1 // N ⊗ P // 0.

Proof. Since f and g conserve the actions is easy to see that f ⊗ 1 and g ⊗ 1 is a Lie–

Rinehart algebra morphism. Furthermore, the morphism g ⊗ 1 is clearly surjective, and

Im(f ⊗ 1) ⊂ Ker(g ⊗ 1). Since fg = 0, we have that f(x)(a) = 0 for every a ∈ A and x ∈ L.
This means that (f ⊗ 1)(x ⊗ p)(a) = [αM

(
f(x)

)
, αP (p)](a) = 0. Moreover, Im(f ⊗ 1) is an

A-module and conserves the Lie bracket since f and g conserve the actions, so Im(f⊗1) is an

ideal. Then to prove the other inclusion, we will show thatM⊗P/ Im(f⊗1) ∼= N⊗P . Since
Im(f ⊗ 1) ⊂ Ker(g⊗ 1) we have a natural epimorphism φ : M ⊗P/ Im(f ⊗ 1)→ N ⊗P . Now
we define the map ϕ : N×P →M⊗P/ Im(f⊗1) such that ϕ(n, p) = m⊗p+ Im(f⊗1) where

m is such that f(m) = n. It is easy to prove that is a Lie pairing, so by the universality of the

tensor product, there exists a unique Lie–Rinehart morphism ϕ̄ : N⊗P →M⊗P/ Im(f⊗1),

and it is straightforward that φ and ϕ are inverse morphisms.

Theorem 4.29. Given a perfect Lie–Rinehart algebra L, the tensor product L ⊗ L where

the action of L on L is the Lie bracket, with the additional relation

(a[x, y]⊗ b[x′, y′]) = ab([x, y]⊗ [x′, y′])− b[x′, y′](a)(x⊗ y) + a[x, y](b)(x′ ⊗ y′),

where a, b ∈ A and x, x′, y, y′ ∈ L, denoted by L⊗̂L is the universal central extension of L.

Proof. It is routine to check that L⊗̂L −−−� L is a central extension. To see the universality,

given a central extension p : M −−−� L, we pick a section in Set s : L→M . We define now

a map f : L×L→M by f(x, y) = [s(x), s(y)]. Doing the same trick as in Proposition 4.14,

we see that is a Lie–Rinehart pairing, so it can be extended to L⊗L→M . It is easy to see

that the map vanishes in the elements of the additional relation. Since L is perfect, we saw

in Lemma 4.7(b) that this map is unique.
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