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What to expect

Normed vector spaces with all linear operators?
Quantales as norm recipients
Normed sets
Normed categories
Normed sequential convergence
Cauchy cocompleteness
Some key examples
Presheaf categories
Cauchy cocompletion
Banach’s Fixed Point Theorem
To-Do list
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NVec∞ ??

Objects: normed vector spaces (real, say)
Morphisms: all linear maps

Certainly an uninteresting category!

But becoming interesting when taken with its operator norms, here on a logarithmic scale:

|X f // Y | := sup
x 6=0

log◦(
||fx ||
||x ||

) (with log◦ α = max{0, logα})

|f | ∈ R+ = ([0,∞],≥,+,0) 0 ≥ |idX | |g|+ |f | ≥ |g · f |

|f | <∞ ⇐⇒ f bounded (continuous)
|f | = 0 ⇐⇒ f 1-Lipschitz (non-expanding)
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Replacing R+ = ([0,∞],≥,+,0) by V = (V ,≤,⊗, k)

In this talk, a quantale (always unital and commutative) is given by
a complete lattice (V,≤)

a commutative monoid (V,⊗, k)

satisfying the infinite distributive law u ⊗
∨

i vi =
∨

i u ⊗ vi

That is:

V = (V,≤,⊗, k) is a small, thin, skeletal, cocomplete symmetric monoidal-closed category

Internal hom: u ≤ [v ,w ] ⇐⇒ u ⊗ v ≤ w

Key examples in this talk: R+ (Lawvere), 2 = ({true, false},⇒,∧, true) (Boole)
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Set//V := Fam(V ,≤)
V-normed sets and maps:

A f //

|-|A

≤

��

B

|-|B��
V

|a|A ≤ |fa|B

Set//V is

topological over Set
locally presentable
symmetric monoidal closed

A⊗ B = A× B, |(a,b)| = |a| ⊗ |b| E = {∗}, | ∗ | = k

[A,B] = Set(A,B), |ϕ| =
∧
a∈A

[|a|, |ϕa|] (i.e. |ϕ| is maximal with |ϕ| ⊗ |a| ≤ |ϕa|)
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Cat//V := (Set//V)-Cat, CAT//V := (Set//V)-CAT

Enrichment in Set//V defines V-normed categories and their functors:

X F //

|-|X

≤

""

Y

|-|Y||
(V,⊗)

|f |X ≤ |Ff |Y

E→ X(x , x) X(x , y)⊗ X(y , z)→ X(x , z)

k ≤ |1x | |f | ⊗ |g| ≤ |g · f |
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V-categories vs. (Set//V)-categories

V i
>

// Set//V
s

jj = Fam(V,≤)

V-Cat i
>

// Cat//V
s

kk = (Set//V)-Cat

X 7−→ X = iX : obX = X , X(x , y) = {x → y}, |x → y | = X (x , y)

k ≤ X (x , x), X (x , y)⊗X (y , z) ≤ X (x , z) 7−→ k ≤ |x → x |, |x → y |⊗|y → z| ≤ |x → z|

V = R+ :

Met1
i
>

// NCat1
s

jj

V = 2 :

Ord i
>

// Cat//2
s

jj 3 (X,S), Id(X) ⊆ S, S · S ⊆ S
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Properties of Cat//V, V-normed categories vs. ordinary categories

Cat//V is

topological over Cat
locally presentable
symmetric monoidal closed

X⊗ Y = X× Y, |(f , f ′)| = |f | ⊗ |f ′| E = {∗ → ∗}, |∗ → ∗| = k

[X,Y] = (Cat//V)(X,Y), |α : F → G| =
∧

x∈obX
|αx |

V −→ 2 induces Cat//V −→ Cat//2

(v 7→ true) :⇐⇒ k ≤ v (X, |-|) 7−→ (X,X◦)

with X◦ := {f : k ≤ |f |} (à la Kelly)
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Set//V as a V-normed category??

Every monoidal-closed categoryW becomesW-enriched, qua its internal hom.

Q: What happens toW = Set//V?

A: Obtain a category with V-normed sets as objects and arbitrary maps as morphisms:

Set||V

Therefore:

Set||V is a V-normed category, with |ϕ : A→ B| =
∧

a∈A[|a|, |ϕa|] . Furthermore:

(Set||V)◦ = Set//V
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Normed convergence of sequences

s : N −→ X xo
s0,1 // x1

s1,2 // x2 // ... // xm
sm,n // xn // ...

s|N = s|↑N with ↑N = {n : n ≥ N}

x ∼= ncolim s : (C1) x ∼= colim s (in the ordinary category X with cocone γn : xn → x)

(C2) ∀y ∈ X : (Nat(s|N ,∆y)→ X(x , y))N∈N is a colimit cocone in Set//V

(C2) ⇐⇒ (C2a) k ≤
∨
N

∧
n≥N

|γn|

(C2b) ∀ f : x → y : |f | ≥
∨
N

∧
n≥N

|f · γn|

Existence granted,
a normed colimit is unique up to a k-isomorphism, i.e., up to an isomorphism in X◦.

Walter Tholen (York University, Toronto) Cauchy convergence for normed categories CT2024, Santiago de Compostella 10 / 26



Normed convergence of sequences

s : N −→ X xo
s0,1 // x1

s1,2 // x2 // ... // xm
sm,n // xn // ...

s|N = s|↑N with ↑N = {n : n ≥ N}

x ∼= ncolim s : (C1) x ∼= colim s (in the ordinary category X with cocone γn : xn → x)

(C2) ∀y ∈ X : (Nat(s|N ,∆y)→ X(x , y))N∈N is a colimit cocone in Set//V

(C2) ⇐⇒ (C2a) k ≤
∨
N

∧
n≥N

|γn|

(C2b) ∀ f : x → y : |f | ≥
∨
N

∧
n≥N

|f · γn|

Existence granted,
a normed colimit is unique up to a k-isomorphism, i.e., up to an isomorphism in X◦.

Walter Tholen (York University, Toronto) Cauchy convergence for normed categories CT2024, Santiago de Compostella 10 / 26



Normed convergence of sequences

s : N −→ X xo
s0,1 // x1

s1,2 // x2 // ... // xm
sm,n // xn // ...

s|N = s|↑N with ↑N = {n : n ≥ N}

x ∼= ncolim s : (C1) x ∼= colim s (in the ordinary category X with cocone γn : xn → x)

(C2) ∀y ∈ X : (Nat(s|N ,∆y)→ X(x , y))N∈N is a colimit cocone in Set//V

(C2) ⇐⇒ (C2a) k ≤
∨
N

∧
n≥N

|γn|

(C2b) ∀ f : x → y : |f | ≥
∨
N

∧
n≥N

|f · γn|

Existence granted,
a normed colimit is unique up to a k-isomorphism, i.e., up to an isomorphism in X◦.

Walter Tholen (York University, Toronto) Cauchy convergence for normed categories CT2024, Santiago de Compostella 10 / 26



A word about symmetry

(S) |f · h| ⊗ |h| ≤ |f |

(Sop) |g · f | ⊗ |g| ≤ |f |

For X = iX , X ∈ V-Cat:

(S) ⇐⇒ X (x , y) = X (y , x) ⇐⇒ (Sop)

For (X,S) ∈ Cat//2:

(S) f · h ∈ S & h ∈ S =⇒ f ∈ S

(Sop) g · f ∈ S & g ∈ S =⇒ f ∈ S

For X ∈ Cat//V:

If X satisfies (S), then (C1) & (C2a) suffice to also have (C2b).
But here we may not trade (S) for (Sop) (as done in [Kubiś 2017])!
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Cauchy cocompleteness

s : N→ X Cauchy :⇐⇒ k ≤
∨

N
∧

n≥N |sm,n|

X Cauchy cocomplete :⇐⇒ every Cauchy sequence in X has a normed colimit in X

Caution: A sequence with a normed colimit may not be Cauchy!

For X = iX , X ∈ R+-Cat = Met1:

s Cauchy ⇐⇒ inf
N

sup
n≥m≥N

X (xm, xn) = 0

⇐⇒ s is forward Cauchy (see [Bonsangue, van Breugel, Rutten 1998])
x ∼= ncolim s ⇐⇒ ∀y : X (x , y) = inf

N
sup
n≥N

X (xn, y)

⇐⇒ x is a forward limit of s (in the sense of [BvBR 1998])

For (X,S) ∈ Cat//2: s Cauchy ⇐⇒ eventually all connecting maps are in S.
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Cauchy cocompleteness vs. idempotent completeness

Denote by e the constant sequence x e // x e // x // ... given by an idempotent e.

e has (ordinary) colimit in X ⇐⇒ e splits (e = t · r , r · t = 1)

e is Cauchy ⇐⇒ k ≤ |e|
e has normed colimit in X ⇐⇒ e splits such that k ≤ |r |, k ≤ |t |

Equivalent are for a V-normed category X:

X◦ is idempotent complete (i.e., every idempotent in X◦ splits in X◦).
Every constant Cauchy sequence in X has a normed colimit in X.
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Returning to normed vector spaces

For a constant c > 0, let Rc be the 1-dimensional vector space R, normed by |1|c = c.

Should we allow c = 0?

R = R1 // R 1
2

// R 1
3

// ... // R0

Should we allow c =∞?

R = R1 R2oo R3oo ...oo R∞oo

The price for “Yes”: Put e∞ =∞ and 0 · ∞ =∞ (!), then consider the adjunction

R+ = ([0,∞],≥,+,0)
exp

⊥
// R× = ([0,∞],≥, ·,1)

log◦
ll

Int’l hom [β, α] : α −̂β = max{α− β,0} α
β = inf{γ : α ≤ β · γ}
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The normed category SNVec∞
A seminorm ||-|| : X → [0,∞] on a vector space X must satisfy:

||0|| = 0
||ax || = |a| ||x || (a ∈ R,a 6= 0)

||x + y || ≤ ||x ||+ ||y ||

With all linear maps as morphisms and |X f // Y | := supx∈X log◦( ||fx ||||x || ), one obtains
the normed category SNVec∞.

Theorem
SNVec∞ is Cauchy cocomplete. But its full normed subcategory NVec∞ is not.

The proof is harder than one may have expected, although the starting point seems clear:

For a Cauchy sequence s = (Xm
sm,n // Xn)m≤n , form the colimit (Xn

γn // X )n in Vec and
put

||x || := sup
N∈N

inf
n≥N

inf
z∈γ−1

n x
||z||n (x ∈ X )
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Some final remarks on NVec∞

Call a linear map f : X → Y of seminormed vector spaces a 0-to-0 morphism if ||x || = 0
alawys implies ||fx || = 0. This defines the wide subcategory SNVec00 of SNVec∞.

Corollary
The normed category NVec∞ is a full reflective subcategory of SNVec00 (not of SNVec∞).
It has colimits of all those Cauchy sequences whose normed colimit in SNVec∞ is also
a colimit in the ordinary category SNVec00.

An existing normed colimit in NVec∞ of a Cauchy sequence of isometric embeddings of
Banach spaces may not be Banach:

R // R2 // R3 // ... //
⊕

n Rn
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No linear structure: Is Met∞ Cauchy cocomplete?

Met∞:
Objects: (Lawvere) metric spaces
Morphisms: all maps, normed by

|X ϕ // Y | := sup
x ,x ′∈X

log◦(
Y (ϕx , ϕx ′)

X (x , x ′)
)

V-Lip:
Objects: (small) V-categories
Morphisms: all maps, normed by

|X ϕ // Y | :=
∧

x ,x ′∈X

[X (x , x ′),Y (ϕx , ϕx ′)]

Get Met∞ from R×-Lip via change of base:

R+
exp

⊥
// R×

log◦

hh
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Yes: Met∞ is Cauchy cocomplete!

Recall “totally below”:
u �

∨
i∈I

vi ⇐⇒ ∃ i ∈ I : u � vI

Theorem
V-Lip is Cauchy cocomplete if
⇓k = {ε ∈ V : ε� k} is up-directed;
k is approximated from totally below:

∨
⇓k = k;

⊗ preserves�: (u � v , w > ⊥ =⇒ u ⊗ w � v ⊗ w).

The proof uses “ε-methods” in the quantalic context, as first pioneered by [Flagg 1992]
(Proceedings of CT1991, Montreal)
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Finally: Is Set||V Cauchy cocomplete?

Theorem
For every small V-normed category X, the V-normed presheaf category

[X,Set||V]

is Cauchy cocomplete, provided that V satisfies
(A) k is approximated from totally below:

∨
⇓k = k;

OR

(B) k ∧-distributes over arbitrary joins: k ∧
∨

i vi =
∨

i k ∧ vi .

The proof is much harder than expected!
Conditions (A) and (B) are independent of each other.
We don’t know of a quantale V for which Set||V fails to be Cauchy cocomplete!
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Reminders: weighted colimits, distributors, accessible presheaves

F : A→ X, ϕ : Aop → Set||V V-normed functors of V-normed categories A,X (A small),

also written as composable V-distributors: F ∗ : X ◦ // A , ϕ : A ◦ // E

x ∼= colimϕF ⇐⇒ X(x , y) ∼= Nat(ϕ,X(F−, y)) naturally in y

⇐⇒ x ∼= colimϕ·F∗ idX
⇐⇒ : “ x is a weighted colimit of ϕ · F ∗ ”

After [Kelly-Schmitt 2005]:

ψ : Xop → Set||V accessible :⇐⇒ ψ = ϕ · F ∗ for some F , ϕ as above

PX := full normed subcategory of [Xop,Set||V] of all accessible presheaves on X
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Normed colimits as weighted colimits

Proposition
If V satisfies condition (A) or (B), then for every V-normed category X,
PX is Cauchy cocomplete.

For a Cauchy sequence s in the V-normed category X, form

ϕs ∼= ncolim (N s // X
yX // PX)

Proposition

x ∼= ncolims ⇐⇒ x ∼= colimϕs idX

Corollary
X Cauchy cocomplete ⇐⇒ X has weighted colimits for all F : A→ X, ϕ : Aop → Set||V,
with A countable and ϕ a normed colimit of a Cauchy sequence of representables in PA.
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Cauchy cocompletion (à la [Kelly, Schmitt 2005])

V continues to satisfy (A) or (B).

Let Φ be the class of weights used in the Corollary, so that

X is Cauchy cocomplete ⇐⇒ X is Φ-cocomplete .

Let Φ(X) be the least full replete V-normed subcategory of PX closed under Φ-colimits.

Theorem
For every V-normed category X and every Cauchy cocomplete V-normed category Y, the
composition with the restricted Yoneda embedding yX : X→ Φ(X) defines an equivalence

(Φ-COCTS)(Φ(X),Y)→ (CAT//V)(X,Y) .

That is, Φ(−) provides a left biadjoint to the inclusion 2-functor Φ-COCTS→ (CAT//V).

The equivalence restricts to (Φ-Cocts)(Φ(X),Y)→ (Cat//V)(X,Y) for small X and Y.
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Banach’s Fixed Point Theorem

Let X be (R+-)normed and F : X→ X contractive: there is ` < 1 with |Fh| ≤ `|h| for all h.

Suppose we have some f : x → Fx with |f | <∞. Just like for metric spaces, the sequence

sf = ( x f // Fx Ff // F 2x F 2f // F 3x F 3f // ... )

is Cauchy. Would its colimit be a “fixed point” of F?

Theorem
Let X be Cauchy cocomplete with some f as above. If the contractive endofunctor

F preserves y ∼= colim sf , then the canonical f : y → Fy is an iso with |f | = 0;

F preserves y ∼= ncolim sf , then the canonical f : y → Fy is a 0-iso: |f | = 0 = |f−1|.

Note: Preservation of the normed colimit follows from its ordinary preservation
when X satisfies the symmetry condition (S) or (Sop).
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A To-Do list

Find a quantale V such that Set||V fails to be Cauchy cocomplete!
Why not directed or filtered systems instead of just sequences? Relevant examples?
Beyond quantales: V any symmetric monoidal-closed category, ... ?
Is V-Dist with the Hausdorff norm Cauchy cocomplete?
V-normed 2-categories, etc.!
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