Weak equivalences between algebraic weak $\omega\text{-}categories$ j/w Soichiro Fujii^1 and Keisuke Hoshino^2

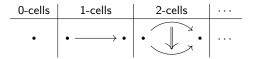
Yuki Maehara³

Kyoto University

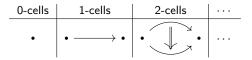
Category Theory 2024, Santiago de Compostela

 $^{^1\}mathrm{JSPS}$ Overseas Research Fellowship & Australian Research Council Discovery Project DP190102432

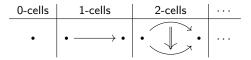
 ²JSPS Research Fellowship for Young Scientists & JSPS KAKENHI Grant Number JP23KJ1365
³JSPS KAKENHI Grant Number JP21K20329, JP23K12960 & P24KJ0126



Our weak ω -categories will be globular sets

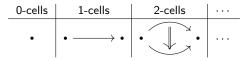


Our weak $\omega\text{-categories}$ will be globular sets equipped with extra structure encoded by a monad $T_{\mathrm wk}.$



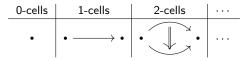
Our weak $\omega\text{-categories}$ will be globular sets equipped with extra structure encoded by a monad $T_{\mathrm wk}.$

We should have {strict ω -cats} \subset {weak ω -cats},



Our weak ω -categories will be globular sets equipped with extra structure encoded by a monad T_{wk} .

We should have {strict ω -cats} \subset {weak ω -cats}, or equivalently a monad map $\alpha: T_{wk} \to T_{st}$.

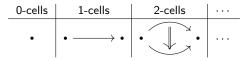


Our weak ω -categories will be globular sets equipped with extra structure encoded by a monad T_{wk} .

We should have {strict ω -cats} \subset {weak ω -cats}, or equivalently a monad map $\alpha: T_{wk} \to T_{st}$.

Definition

 T_{wk} is the initial cartesian monad over T_{st} with contraction.

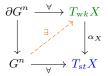


Our weak ω -categories will be globular sets equipped with extra structure encoded by a monad T_{wk} . We should have {strict ω -cats} \subset {weak ω -cats}, or equivalently a monad map $\alpha : T_{wk} \rightarrow T_{st}$.

Definition

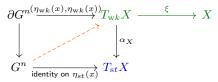
 T_{wk} is the initial cartesian monad over T_{st} with contraction.

i.e. $T_{\mathrm{w}k}$ is the universal monad equipped with a lifting operation

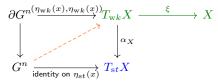


Let $(X, \xi \colon T_{wk}X \to X)$ be a weak ω -category and $x \in X_{n-1}$. We can define $1_x \in X_n$ by

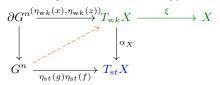
Let $(X, \xi \colon T_{wk}X \to X)$ be a weak ω -category and $x \in X_{n-1}$. We can define $1_x \in X_n$ by



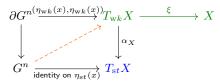
Let $(X, \xi \colon T_{wk}X \to X)$ be a weak ω -category and $x \in X_{n-1}$. We can define $1_x \in X_n$ by



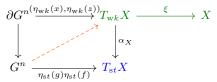
Similarly, given *n*-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $gf \in X_n$ using



Let $(X,\xi \colon T_{\le k}X \to X)$ be a weak ω -category and $x \in X_{n-1}$. We can define $1_x \in X_n$ by



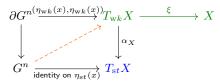
Similarly, given *n*-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $gf \in X_n$ using



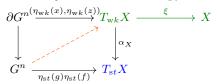
Slogan

A weak ω -category has "all" the operations that a strict ω -category has,

Let $(X, \xi \colon T_{\le k}X \to X)$ be a weak ω -category and $x \in X_{n-1}$. We can define $1_x \in X_n$ by



Similarly, given *n*-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $gf \in X_n$ using



Slogan

A weak ω -category has "all" the operations that a strict ω -category has, including what one usually think of as relations.

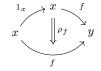
There are operations that take a 1-cell $f \colon x \to y$ as input and spit out:

There are operations that take a 1-cell $f \colon x \to y$ as input and spit out:

$$x \xrightarrow{1_x} x \xrightarrow{f} y$$

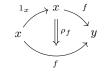
There are operations that take a 1-cell $f \colon x \to y$ as input and spit out:

$$x \xrightarrow{1_x} x \xrightarrow{f} y$$

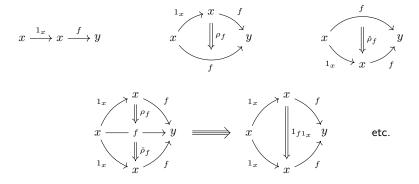


There are operations that take a 1-cell $f: x \to y$ as input and spit out:

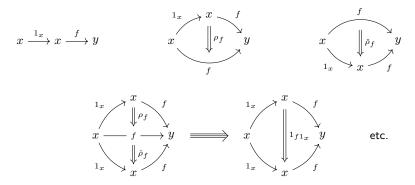
$$x \xrightarrow{1_x} x \xrightarrow{f} y$$



There are operations that take a 1-cell $f: x \to y$ as input and spit out:

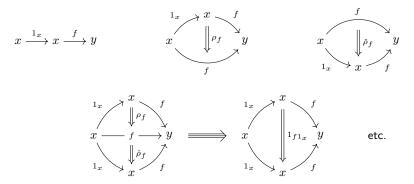


There are operations that take a 1-cell $f: x \to y$ as input and spit out:



All these cells except for the first are coinductive equivalences.

There are operations that take a 1-cell $f: x \to y$ as input and spit out:

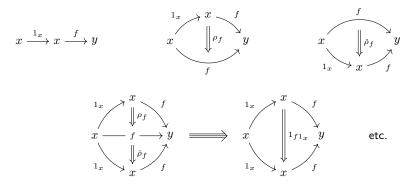


All these cells except for the first are coinductive equivalences.

Slogan

A weak ω -category has "all" the operations that a strict ω -category has, including what one usually think of as relations.

There are operations that take a 1-cell $f: x \to y$ as input and spit out:



All these cells except for the first are coinductive equivalences.

Slogan

A weak ω -category has "all" the operations that a strict ω -category has, including what one usually think of as relations.

The fun/tricky part is correctly identifying *what operations one needs* in a given situation.

- A weak equivalence $F: X \rightarrow Y$ should be a T_{wk} -algebra morphism that is
 - essentially surjective on objects, and
 - fully faithful.

- essentially surjective on objects, and
- fully faithful.

More explicitly,

• $[\forall y \in Y_0] \ [\exists x \in X_0] \ Fx \sim y$

- essentially surjective on objects, and
- fully faithful.

More explicitly,

• $[\forall y \in Y_0] \ [\exists x \in X_0] \ Fx \sim y$ (i.e. \exists coinductive equivalence $Fx \to Y$) and

- essentially surjective on objects, and
- fully faithful.

More explicitly,

- $[\forall y \in Y_0] \ [\exists x \in X_0] \ Fx \sim y$ (i.e. \exists coinductive equivalence $Fx \to Y$) and
- $[\forall x, x' \in X_0]$ the induced map $X(x, x') \to Y(Fx, Fx')$ is a weak equivalence.

- essentially surjective on objects, and
- fully faithful.

More explicitly,

- $[\forall y \in Y_0] \ [\exists x \in X_0] \ Fx \sim y$ (i.e. \exists coinductive equivalence $Fx \to Y$) and
- $[\forall x, x' \in X_0]$ the induced map $X(x, x') \to Y(Fx, Fx')$ is a weak equivalence.

Definition

A weak equivalence $F:X\to Y$ is a $T_{{\rm w}k}\text{-}{\rm algebra}$ morphism that is essentially surjective on each level.

- essentially surjective on objects, and
- fully faithful.

More explicitly,

- $[\forall y \in Y_0] \ [\exists x \in X_0] \ Fx \sim y$ (i.e. \exists coinductive equivalence $Fx \to Y$) and
- $[\forall x, x' \in X_0]$ the induced map $X(x, x') \to Y(Fx, Fx')$ is a weak equivalence.

Definition

A weak equivalence $F:X\to Y$ is a $T_{{\rm w}k}\text{-}{\rm algebra}$ morphism that is essentially surjective on each level.

Theorem (Fujii-Hoshino-M.)

The class of weak equivalences enjoys the 2-out-of-3 property. That is, if any two of F, G and GF are weak equivalences then so is the third. The proof of the strict case (Lafont-Métayer-Worytkiewicz) generalises to the weak case smoothly

The proof of the strict case (Lafont-Métayer-Worytkiewicz) generalises to the weak case smoothly except:

Lemma

For a coinductive equivalence $e \colon x' \to x$, the whiskering map

$$(-) * e \colon X(x,y) \to X(x',y)$$

is essentially surjective on each level.

The proof of the strict case (Lafont-Métayer-Worytkiewicz) generalises to the weak case smoothly except:

Lemma

For a coinductive equivalence $e \colon x' \to x$, the whiskering map

$$(-) * e \colon X(x,y) \to X(x',y)$$

is essentially surjective on each level.

which is proved by reducing to the special case:

Lemma

The whiskering map

$$(-)*\mathbf{1}_{\pmb{x}}\colon X(x,y)\to X(x,y)$$

is essentially surjective on each level.

The proof of the strict case (Lafont-Métayer-Worytkiewicz) generalises to the weak case smoothly except:

Lemma

For a coinductive equivalence $e \colon x' \to x$, the whiskering map

$$(-) * e \colon X(x,y) \to X(x',y)$$

is essentially surjective on each level.

which is proved by reducing to the special case:

Lemma

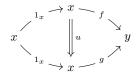
The whiskering map

$$(-)*\mathbf{1}_{x}\colon X(x,y)\to X(x,y)$$

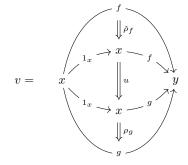
is essentially surjective on each level.

The latter is still non-trivial for weak ω -categories!

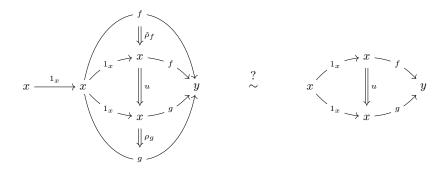
Given $u: f * 1_x \to g * 1_x$, want $v: f \to g$ s.t. $v * 1_x \sim u$.



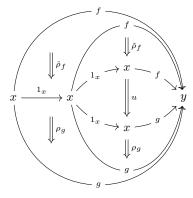
Given $u: f * 1_x \to g * 1_x$, want $v: f \to g$ s.t. $v * 1_x \sim u$.



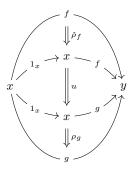
Given $u \colon f * 1_x \to g * 1_x$, want $v \colon f \to g \text{ s.t. } v * 1_x \sim u$.



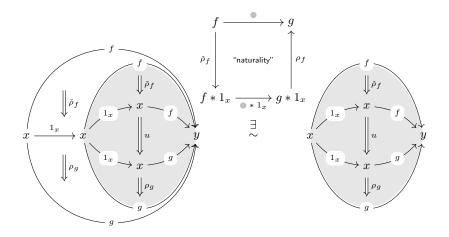
Given $u: f * 1_x \to g * 1_x$, want $v: f \to g$ s.t. $v * 1_x \sim u$.



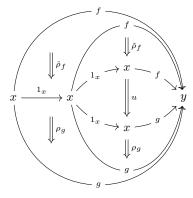
 $\stackrel{\Box}{\sim}$



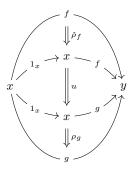
Given $u \colon f * 1_x \to g * 1_x$, want $v \colon f \to g \text{ s.t. } v * 1_x \sim u$.



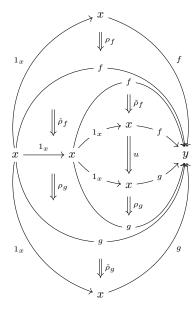
Given $u: f * 1_x \to g * 1_x$, want $v: f \to g$ s.t. $v * 1_x \sim u$.

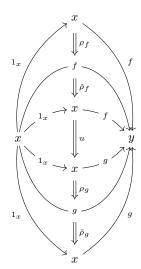


 $\stackrel{\Box}{\sim}$



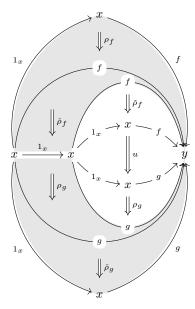
Given $u \colon f * 1_x \to g * 1_x$, want $v \colon f \to g \text{ s.t. } v * 1_x \sim u$.

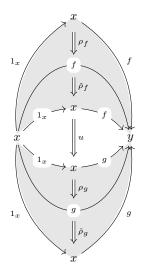




 $\exists \sim$

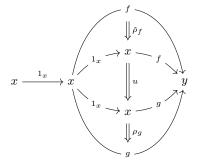
Given $u: f * 1_x \to g * 1_x$, want $v: f \to g$ s.t. $v * 1_x \sim u$.



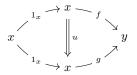


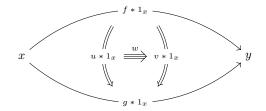
 $\exists \sim$

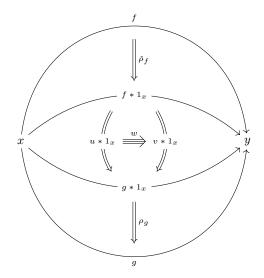
Given $u \colon f * 1_x \to g * 1_x$, want $v \colon f \to g \text{ s.t. } v * 1_x \sim u$.

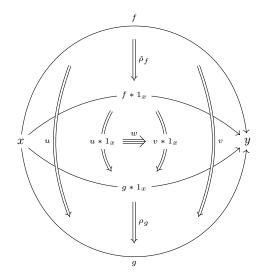


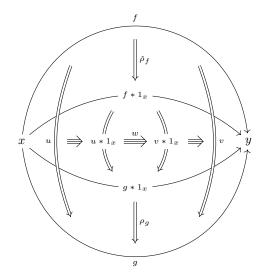
 $\stackrel{\Box}{\sim}$











• systematically adjusting the boundary dimension by dimension, and

- systematically adjusting the boundary dimension by dimension, and
- exhibiting suitable naturality of this adjusting

- systematically adjusting the boundary dimension by dimension, and
- exhibiting suitable naturality of this adjusting

using lots and lots of operations!

- systematically adjusting the boundary dimension by dimension, and
- exhibiting suitable naturality of this adjusting

using lots and lots of operations!

Preprint: https://arxiv.org/pdf/2406.13240

- systematically adjusting the boundary dimension by dimension, and
- exhibiting suitable naturality of this adjusting

using lots and lots of operations!

Preprint: https://arxiv.org/pdf/2406.13240

Other selling points:

 Instead of the cylinders used in the proof of the strict case (Lafont-Métayer-Worytkiewicz), we focus on whiskerings. We think this makes the proof more conceptual.

- systematically adjusting the boundary dimension by dimension, and
- exhibiting suitable naturality of this adjusting

using lots and lots of operations!

Preprint: https://arxiv.org/pdf/2406.13240

Other selling points:

- Instead of the cylinders used in the proof of the strict case (Lafont-Métayer-Worytkiewicz), we focus on whiskerings. We think this makes the proof more conceptual.
- We also extend our result to weak ω -functors (in the sense of Garner).

- systematically adjusting the boundary dimension by dimension, and
- exhibiting suitable naturality of this adjusting

using lots and lots of operations!

Preprint: https://arxiv.org/pdf/2406.13240

Other selling points:

- Instead of the cylinders used in the proof of the strict case (Lafont-Métayer-Worytkiewicz), we focus on whiskerings. We think this makes the proof more conceptual.
- We also extend our result to weak ω -functors (in the sense of Garner).

Thank you!