2-stacks over bisites

Elena Caviglia

University of Leicester

CT2024 Santiago de Compostela 28/06/2024

Sieves

Let C be a category with pullbacks.

Definition.

A **sieve** S on an object $C \in \mathcal{C}$ is a collection of morphisms with codomain C that is closed under precomposition with morphisms of C.

The sieve S can also be seen as a subfunctor of y(C), i.e. a natural transformation

$$S: R \Rightarrow y(C)$$

with injective components.

Grothendieck topology on a category

Definition.

A **Grothendieck topology** τ on C is an assignment for each object $C \in C$ of a collection $\tau(C)$ of sieves on C, called **covering sieves**, in a way such that

- (T0) the maximal sieve y(C) is in $\tau(C)$;
- (T1) if $S \in \tau(C)$, then for every arrow $f: D \to C$ we have that $f^*S \in \tau(D)$;
- (T2) if $S \in \tau(C)$ and R is a sieve on C such that for every $f: D \to C$ in S we have that $f^*R \in \tau(D)$, then $R \in \tau(C)$.

Elena Caviglia 2-stacks over bisites 28/06/2024 3/20

Definition.

Let $F \colon \mathcal{C}^{\mathsf{op}} \to \mathcal{C}at$ be a pseudofunctor and let S be a sieve on $C \in \mathcal{C}$. A **descent datum on** S **for** F is an assignment for every morphism $D \xrightarrow{f} C$ in S of an object $W_f \in F(D)$ and, for every pair of composable morphisms $E \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$, of an isomorphism $\varphi^{f,g} \colon g^*W_f \xrightarrow{\simeq} W_{f \circ g}$ such that, given morphisms $L \xrightarrow{h} E \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$, the following diagram is commutative

$$h^*(g^*W_f) \xrightarrow{h^*\varphi^{f,g}} h^*(W_{f\circ g})$$

$$\downarrow \downarrow \downarrow \downarrow \qquad \qquad \downarrow \varphi^{f\circ g,h}$$

$$(g \circ h)^*(W_f) \xrightarrow{\varphi^{f,g\circ h}} W_{f\circ g\circ h}.$$

Definition.

This descent datum is called **effective** if there exist an object $W \in F(C)$ and, for every morphism $D \xrightarrow{f} C \in S$, an isomorphism

$$\psi^f \colon f^*(W) \xrightarrow{\simeq} W_f$$

such that, given morphisms $E \xrightarrow{g} D \xrightarrow{f} C$ with $f \in S$, the following diagram is commutative

Definition of stack

Definition.

A pseudofunctor $F \colon \mathcal{C}^{op} \to \mathcal{C}at$ is a **stack** if it satisfies the following conditions:

- Every descent datum on a covering sieve S for F is effective;
- Given a covering sieve S on C, objects X and Y of F(C) and for every $f: D \to C$ in S a morphism $w_f: f^*X \to f^*Y$ in F(D) such that $g^*(w_f) = w_{f \circ g}$, there exists a unique morphism $w: X \to Y$ such that $f^*w = w_f$.

Proposition (Street).

Let $F \colon \mathcal{C}^{\mathsf{op}} \to \mathcal{C}\!\mathit{at}$ be a pseudofunctor. The following facts are equivalent:

- (1) F is a stack;
- (2) for every object $C \in C$ and every covering sieve $S: R \Rightarrow y(C)$ in $\tau(C)$ the functor

$$-\circ S: [\mathcal{C}^{op}, \mathcal{C}at](y(\mathcal{C}), F) \longrightarrow [\mathcal{C}^{op}, \mathcal{C}at](R, F)$$

is an equivalence of categories.

Proposition (Street).

Let $F \colon \mathcal{C}^{\mathsf{op}} \to \mathcal{C}\!\mathit{at}$ be a pseudofunctor. The following facts are equivalent:

- (1) F is a stack;
- (2) for every object $C \in C$ and every covering sieve $S: R \Rightarrow y(C)$ in $\tau(C)$ the functor

$$-\circ S: [\mathcal{C}^{op}, \mathcal{C}at](y(C), F) \longrightarrow [\mathcal{C}^{op}, \mathcal{C}at](R, F)$$

is an equivalence of categories.

- essentially surjective \approx every descent datum is effective
- \bullet fully-faithful \approx every matching family of morphisms has a unique amalgamation

Elena Caviglia 2-stacks over bisites 28/06/2024 7/20

$$F(C) \xrightarrow{\Gamma} [C^{op}, Cat](y(C), F) \xrightarrow{-\circ S} [C^{op}, Cat](R, F)$$

$$F(C) \xrightarrow{\Gamma} [C^{op}, Cat](y(C), F) \xrightarrow{-\circ S} [C^{op}, Cat](R, F)$$

- $\alpha: R \Rightarrow F$ pseudonatural transformation is given by:
 - $D \in \mathcal{C}$, $\alpha_D \colon R(D) \to F(D)$ functor that sends $D \xrightarrow{t} \mathcal{C}$ to $W_f \in F(D)$
 - $E \xrightarrow{g} D$, $\alpha_g : \alpha_E \circ R(g) \Rightarrow F(g) \circ \alpha_D$ pseudonatural transformation of components $\varphi^{f,g} : W_{f \circ g} \xrightarrow{\simeq} g^* W_f$

$$F(C) \xrightarrow{\Gamma} [C^{op}, Cat](y(C), F) \xrightarrow{-\circ S} [C^{op}, Cat](R, F)$$

- $\alpha: R \Rightarrow F$ pseudonatural transformation is given by:
 - $D \in \mathcal{C}$, $\alpha_D \colon R(D) \to F(D)$ functor that sends $D \xrightarrow{f} \mathcal{C}$ to $W_f \in F(D)$
 - $E \xrightarrow{g} D$, $\alpha_g : \alpha_E \circ R(g) \Rightarrow F(g) \circ \alpha_D$ pseudonatural transformation of components $\varphi^{f,g} : W_{f \circ g} \xrightarrow{\simeq} g^* W_f$

$$\alpha \cong (-\circ S) \circ \Gamma(W) \qquad \approx \qquad \psi \colon \Gamma(W) \circ S \Rrightarrow \alpha, \ \psi^f \colon f^*W \xrightarrow{\simeq} W_f$$

$$F(C) \xrightarrow{\Gamma} [C^{op}, Cat](y(C), F) \xrightarrow{-\circ S} [C^{op}, Cat](R, F)$$

- $\alpha: R \Rightarrow F$ pseudonatural transformation is given by:
 - $D \in \mathcal{C}$, $\alpha_D \colon R(D) \to F(D)$ functor that sends $D \xrightarrow{f} \mathcal{C}$ to $W_f \in F(D)$

- $E \xrightarrow{g} D$, $\alpha_{g} : \alpha_{F} \circ R(g) \Rightarrow F(g) \circ \alpha_{D}$ pseudonatural

transformation of components $\varphi^{f,g}: W_{f \circ g} \xrightarrow{\simeq} g^* W_f$

$$\alpha \cong (-\circ S) \circ \Gamma(W) \qquad \approx \qquad \psi \colon \Gamma(W) \circ S \Rrightarrow \alpha, \ \psi^f \colon f^*W \xrightarrow{\simeq} W_f$$

- $X, Y \in F(C)$, $m: ((-\circ S) \circ \Gamma)(X) \Rightarrow ((-\circ S) \circ \Gamma)(Y)$ modification is given by:
 - $D \in \mathcal{K}$, $m_D : (\Gamma(X))_D \Rightarrow (\Gamma(Y))_D$ natural transformation of components $w_f : f^*X \to f^*Y$

Elena Caviglia 2-stacks over bisites 28/06/2024 8/20

$$F(C) \xrightarrow{\Gamma} [C^{op}, Cat](y(C), F) \xrightarrow{-\circ S} [C^{op}, Cat](R, F)$$

- $\alpha: R \Rightarrow F$ pseudonatural transformation is given by:
 - $D \in \mathcal{C}$, $\alpha_D \colon R(D) \to F(D)$ functor that sends $D \xrightarrow{t} \mathcal{C}$ to $W_f \in F(D)$
 - $E \xrightarrow{g} D$, $\alpha_g : \alpha_E \circ R(g) \Rightarrow F(g) \circ \alpha_D$ pseudonatural transformation of components $\varphi^{f,g} : W_{f \circ g} \xrightarrow{\simeq} g^* W_f$

$$\alpha \cong (-\circ S) \circ \Gamma(W) \qquad \approx \qquad \psi \colon \Gamma(W) \circ S \Rrightarrow \alpha, \ \psi^f \colon f^*W \xrightarrow{\simeq} W_f$$

- $X, Y \in F(C)$, $m: ((-\circ S) \circ \Gamma)(X) \Rightarrow ((-\circ S) \circ \Gamma)(Y)$ modification is given by:
 - $D \in \mathcal{K}$, $m_D : (\Gamma(X))_D \Rightarrow (\Gamma(Y))_D$ natural transformation of components $w_f : f^*X \to f^*Y$

$$m = (-\circ S) \circ \Gamma(X \xrightarrow{w} Y)$$
 \approx $f^*w = w_f$ for every $f \in S$

Elena Caviglia 2-stacks over bisites 28/06/2024 8 / 20

Bisieves

Let $\mathcal K$ be a small 2-category with bi-iso-comma objects.

Definition (Street).

A **bisieve** S over $C \in \mathcal{K}$ is a fully faithful arrow $S: R \Rightarrow y(C)$ in $\mathcal{B}icat(\mathcal{K}^{op}, \mathcal{C}at)$.

- for our purposes we can consider S injective on objects;
- *S* is closed under precomposition only up to isomorphism;
- all 2-cells are in S.

Grothendieck topology on a 2-category

Definition (Street).

A **bitopology** τ on \mathcal{K} is an assignment for each object $\mathcal{C} \in \mathcal{K}$ of a collection $\tau(\mathcal{C})$ of bisieves on \mathcal{C} , called **covering bisieves**, in a way such that

- (T0) the identity of y(C) is in $\tau(C)$;
- (T1) for all $S: R \to y(C)$ in $\tau(\mathcal{Y})$ and all arrows $f: D \to C$ in \mathcal{K} , the bi-iso-comma object

$$P \longrightarrow y(D)$$

$$\downarrow \qquad \qquad \downarrow -\circ f$$

$$R \longrightarrow y(C)$$

has the top arrow is in $\tau(D)$;

(T2) being a covering bisieve can be checked locally.

2-stacks

Definition (C.).

Let (\mathcal{K}, τ) be a bisite. A trihomomorphism $F : \mathcal{K}^{op} \to \mathcal{B}icat$ is a **2-stack** if for every object $C \in \mathcal{K}$ and every bisieve $S : R \Rightarrow y(C)$ in $\tau(C)$ the pseudofunctor

 $-\circ S\colon Tricat(\mathcal{K}^{op},\mathcal{B}icat)(y(C),F)\longrightarrow Tricat(\mathcal{K}^{op},\mathcal{B}icat)(R,F)$ is a biequivalence.

Elena Caviglia 2-stacks over bisites 28/06/2024

Towards explicit conditions

Theorem (Buhné).

Let $F: \mathcal{K}^{op} \to \mathcal{B}icat$ be a trihomomorphism. For every $C \in \mathcal{K}$ there exists a biequivalence

$$\Gamma \colon F(C) \longrightarrow Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(y(C), F)$$

which is natural in C.

Towards explicit conditions

Theorem (Buhné).

Let $F: \mathcal{K}^{op} \to \mathcal{B}icat$ be a trihomomorphism. For every $C \in \mathcal{K}$ there exists a biequivalence

$$\Gamma \colon F(C) \longrightarrow Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(y(C), F)$$

which is natural in C.

Remark.

Assuming the axiom of choice, biequivalence means:

- (1) surjective on equivalence classes of objects;
- (2) essentially surjective on morphisms;
- (3) fully-faithful on 2-cells.

Surjectivity on equivalence classes of objects

$$F(C) \xrightarrow{\Gamma} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(y(C), F) \xrightarrow{-\circ S} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(R, F)$$

Elena Caviglia 2-stacks over bisites 28/06/2024 13 / 20

Surjectivity on equivalence classes of objects

$$F(C) \xrightarrow{\Gamma} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(y(C), F) \xrightarrow{-\circ S} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(R, F)$$

 $\alpha: R \Rightarrow F$ tritransformation is given by:

- $D \in \mathcal{K}$, $\alpha_D \colon R(D) \to F(D)$ pseudofunctor that sends $D \xrightarrow{f} C$ to $W_f \in F(D)$ and $\eta \colon f \Rightarrow f'$ to $W_f \xrightarrow{W_{\eta}} W_{f'}$
- $E \xrightarrow{g} D$, $\alpha_g : \alpha_E \circ R(g) \Rightarrow F(g) \circ \alpha_D$ pseudonatural transformation of components $\varphi^{f,g} : W_{f \circ g} \xrightarrow{\sim} g^* W_f$
- $L \xrightarrow{h} E \xrightarrow{g} D$, $\beta^{g,h}$ invertible modification of components

$$W_{\overbrace{f\circ g\circ h}} \xrightarrow{\varphi^{\widetilde{f\circ g},h}} g^* W_{\overbrace{f\circ g}} \xrightarrow{h^* \varphi^{f,g}} h^* g^* W_f$$

$$\downarrow \wr$$

$$W_{\overbrace{f\circ g\circ h}} \xrightarrow{\varphi^{f,g\circ h}} (g\circ h)^* W_f$$

Surjectivity on equivalence classes of objects

$$F(C) \xrightarrow{\Gamma} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(y(C), F) \xrightarrow{-\circ S} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(R, F)$$

 $\alpha: R \Rightarrow F$ tritransformation is given by:

- $D \in \mathcal{K}$, $\alpha_D \colon R(D) \to F(D)$ pseudofunctor that sends $D \xrightarrow{f} C$ to $W_f \in F(D)$ and $\eta \colon f \Rightarrow f'$ to $W_f \xrightarrow{W_{\eta}} W_{f'}$
- $E \xrightarrow{g} D$, $\alpha_g : \alpha_E \circ R(g) \Rightarrow F(g) \circ \alpha_D$ pseudonatural transformation of components $\varphi^{f,g} : W_{f \circ g} \xrightarrow{\sim} g^* W_f$
- $L \xrightarrow{h} E \xrightarrow{g} D$, $\beta^{g,h}$ invertible modification of components

$$W_{\overbrace{f\circ g\circ h}} \xrightarrow{\varphi^{\widehat{f\circ g},h}} g^*W_{\overbrace{f\circ g}} \xrightarrow{h^*\varphi^{f,g}} h^*g^*W_f$$

$$\downarrow \wr$$

$$W_{\overbrace{f\circ g\circ h}} \xrightarrow{\varphi^{f,g\circ h}} (g\circ h)^*W_f$$

$$\alpha \simeq ((-\circ S)\circ \Gamma)(W) \approx \psi \colon \alpha \Rrightarrow \Gamma(W)\circ S, \psi^f \colon W_f \stackrel{\sim}{\to} f^*W$$

13 / 20

Elena Caviglia 2-stacks over bisites 28/06/2024

Essential surjectivity on morphisms

$$F(C) \xrightarrow{\Gamma} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(y(C), F) \xrightarrow{-\circ S} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(R, F)$$

 $X, Y \in F(C)$, $m: ((-\circ S) \circ \Gamma)(X) \Rrightarrow ((-\circ S) \circ \Gamma)(Y)$ trimodification is given by:

- D∈ K, m_D: (Γ(X))_D ⇒ (Γ(Y))_D pseudonatural transformation of components w_f: f*X → f*Y (the pseudonaturality gives isomorphic 2-cells w_η: F(η)_Y ∘ w_f ⇒ w_{f'} ∘ F(η)_X)
- $E \xrightarrow{g} D$, m_g invertible modification of components $\varphi^{f,g}$ relating g^*w_f and $w_{\widetilde{f \circ g}}$

The axioms of trimodification yield the cocycle condition on morphisms.

Elena Caviglia 2-stacks over bisites 28/06/2024

Essential surjectivity on morphisms

$$F(C) \xrightarrow{\Gamma} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(y(C), F) \xrightarrow{-\circ S} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(R, F)$$

 $X, Y \in F(C)$, $m: ((-\circ S) \circ \Gamma)(X) \Rightarrow ((-\circ S) \circ \Gamma)(Y)$ trimodification is given by:

- $D \in \mathcal{K}$, $m_D : (\Gamma(X))_D \Rightarrow (\Gamma(Y))_D$ pseudonatural transformation of components $w_f : f^*X \to f^*Y$ (the pseudonaturality gives isomorphic 2-cells $w_n : F(\eta)_Y \circ w_f \Rightarrow w_{f'} \circ F(\eta)_X$)
- $E \xrightarrow{g} D$, m_g invertible modification of components $\varphi^{f,g}$ relating g^*w_f and $w_{\widetilde{f \circ g}}$

The axioms of trimodification yield the cocycle condition on morphisms.

$$m \cong ((-\circ S) \circ \Gamma)(X \xrightarrow{w} Y) \qquad \approx \qquad \psi \colon m \Longrightarrow \Gamma(w) \circ S, \psi^f \colon w_f \stackrel{\cong}{\Rightarrow} f^*w$$

Elena Caviglia 2-stacks over bisites 28/06/2024 14 / 20

Fully-faithfulness on 2-cells

$$F(C) \xrightarrow{\Gamma} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(y(C), F) \xrightarrow{-\circ S} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(R, F)$$

 $a, b: X \to Y, p: ((-\circ S) \circ \Gamma)(a) \Longrightarrow ((-\circ S) \circ \Gamma)(b)$ perturbation is given by:

- $d \in \mathcal{K}$, $p_D : (\Gamma(a))_D \Rightarrow (\Gamma(b))_D$ modification of components $w_f : f^*a \Rightarrow f^*b$

The axiom of perturbation yields the compatibility with respect to composition.

Elena Caviglia 2-stacks over bisites 28/06/2024

$$F(C) \xrightarrow{\Gamma} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(y(C), F) \xrightarrow{-\circ S} Tricat(\mathcal{K}^{op}, \mathcal{B}icat)(R, F)$$

 $a, b: X \to Y, p: ((-\circ S) \circ \Gamma)(a) \Longrightarrow ((-\circ S) \circ \Gamma)(b)$ perturbation is given by:

- $d \in \mathcal{K}$, $p_D : (\Gamma(a))_D \Rightarrow (\Gamma(b))_D$ modification of components $w_f : f^*a \Rightarrow f^*b$

The axiom of perturbation yields the compatibility with respect to composition.

$$p = (-\circ S) \circ \Gamma(a \stackrel{w}{\Rightarrow} b)$$
 \approx $w_f = f^*w$ for every $f \in S$

Elena Caviglia 2-stacks over bisites 28/06/2024 15/20

2-stacks: explicit characterization

Theorem (C.).

A trihomomorphism $F: \mathcal{K}^{op} \to \mathcal{B}icat$ is a 2-stack if and only if for every $C \in \mathcal{K}$ and every bisieve $S \in \tau(C)$ the following conditions are satisfied:

- (O) every weak descent datum for S of elements of F is weakly effective;
- (M) every descent datum for S of morphisms of F is effective;
- (2C) every matching family for S of 2-cells of F has a unique amalgamation.

Elena Caviglia 2-stacks over bisites 28/06/2024

Principal 2-bundles

Let K be a small (2,1)-category with iso comma objects.

Definition (C.).

Let $\mathcal X$ and $\mathcal Y$ be objects of $\mathcal K$ with fixed actions of the internal 2-group $\mathcal G$ on them. We say that the morphism $g\colon \mathcal Y\to \mathcal X$ is **2-locally trivial** if there exists a covering bisieve $S\colon R\Rightarrow \mathcal K(-,\mathcal X)$ in $\tau(\mathcal X)$ such that, for every $f\colon \mathcal U\to \mathcal X$ in the bisieve S, the iso-comma object of g along f is equivalent to $\mathcal G\times \mathcal U$ over $\mathcal U$ via a $\mathcal G$ -equivariant equivalence.

Principal 2-bundles

Let K be a small (2,1)-category with iso comma objects.

Definition (C.).

Let $\mathcal X$ and $\mathcal Y$ be objects of $\mathcal K$ with fixed actions of the internal 2-group $\mathcal G$ on them. We say that the morphism $g\colon \mathcal Y\to \mathcal X$ is **2-locally trivial** if there exists a covering bisieve $S\colon R\Rightarrow \mathcal K(-,\mathcal X)$ in $\tau(\mathcal X)$ such that, for every $f\colon \mathcal U\to \mathcal X$ in the bisieve S, the iso-comma object of g along f is equivalent to $\mathcal G\times \mathcal U$ over $\mathcal U$ via a $\mathcal G$ -equivariant equivalence.

Definition (C.).

Let $\mathcal Y$ be an object of $\mathcal K$. A **principal** $\mathcal G$ -**2-bundle over** $\mathcal Y$ is an object $\mathcal P \in \mathcal K$ equipped with an action $p \colon \mathcal G \times \mathcal P \to \mathcal P$ and a $\mathcal G$ -equivariant 2-locally trivial morphism $\pi_{\mathcal P} \colon \mathcal P \to \mathcal Y$.

Elena Caviglia 2-stacks over bisites 28/06/2024 17/20

Definition (C.).

The **quotient pre-2-stack** $[\mathcal{X}/\mathcal{G}]$: $\mathcal{K}^{op} \to 2\mathcal{C}at$ is defined as follows:

- for every object $\mathcal{Y} \in \mathcal{K}$ we define $[\mathcal{X}/\mathcal{G}](\mathcal{Y})$ as the 2-category of pairs (\mathcal{P}, α) where $\pi_{\mathcal{P}} \colon \mathcal{P} \to \mathcal{Y}$ is a principal \mathcal{G} -2-bundle over \mathcal{Y} and $\alpha \colon \mathcal{P} \to \mathcal{X}$ is a \mathcal{G} -equivariant morphism;
- for every morphism $f : \mathcal{Z} \to \mathcal{Y}$ in \mathcal{K} , we define the 2-functor $[\mathcal{X}/\mathcal{G}](f) = f^* : [\mathcal{X}/\mathcal{G}](\mathcal{Y}) \to [\mathcal{X}/\mathcal{G}](\mathcal{Z})$ via iso-comma object along f:
 - via iso-comma object along f;
- for every 2-cell $\Lambda \colon f \Rightarrow g \colon \mathcal{Z} \to \mathcal{Y}$, we define $[\mathcal{X}/\mathcal{G}](\Lambda)$ using the universal property of the iso-comma object.

Elena Caviglia 2-stacks over bisites 28/06/2024 18 / 20

$[\mathcal{X}/\mathcal{G}]$ is a 2-stack

Theorem (C.).

Let K be a bicocomplete and finitely bicomplete (2,1)- category such that comma objects preserve bicolimits in K and let τ be a subcanonical bitopology on it. Then $[\mathcal{X}/\mathcal{G}]$ is a 2-stack.

$[\mathcal{X}/\mathcal{G}]$ is a 2-stack

Theorem (C.).

Let $\mathcal K$ be a bicocomplete and finitely bicomplete (2,1)- category such that comma objects preserve bicolimits in $\mathcal K$ and let τ be a subcanonical bitopology on it. Then $[\mathcal X/\mathcal G]$ is a 2-stack.

Key idea of the proof:

Proposition (C.).

Let τ be a subcanonical topology on $\mathcal K$ and let $S\colon R\Rightarrow y(\mathcal C)$ be a covering bisieve. Then $\mathcal C=\sigma\text{-bicolim}\,\Pi,$ where $\Pi\colon\int R\to K$ is the 2-functor of projection on the first component.

Elena Caviglia 2-stacks over bisites 28/06/2024 19/20

References

E. Caviglia

Generalized principal bundles and quotient stacks

Theory and Applications of Categories, 39:567-597, 2023

E. Caviglia

2-stack over bisites

arXiv: https://arxiv.org/abs/2403.08030, 2024

E. Caviglia

Principal 2-bundles and quotient 2-stacks

arXiv: https://arxiv.org/abs/2403.09379,2024

R. Street.

Characterization of bicategories of stacks.

Category theory. Applications to algebra, logic and topology, Proc. int. Conf., Gummersbach 1981, Lect. Notes Math. 962, 282-291, 1982.