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,
strict & lax mon
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· Enhanced 2-cat /A = F-cat :

· F-functor F : /A - 18 is a

functor F :

Ax-servin-
· F-natural transformation =

2-not transf. With
right components.



F-weighted limits
· Interesting & subtle business (Lack-Shulman



F-weighted limits
· Interesting & subtle business (Lack-Shulman
· Easy case : Fight limits



F-weighted limits
· Interesting & subtle business (Lack-Shulman
· Easy case : Fight limits

- Just -categorical limits in At preserved
by inclusion J : A+ Ax =

C

r
.

lims of diagrams of fight morphisms
unio

. prop --look morphismstoo .



F-weighted limits
· Interesting & subtle business (Lack-Shulman
· Easy case : Fight limits

- Just -categorical limits in At preserved
by inclusion J : A+ Ax =

C

r
.

lims of diagrams of fight morphisms
unio

. prop-look morphismstoo .
-

e E
.g. Tightpullbacks
~ ↑
5 !

"

A

8 u >---- ↑

gil
*

g



Enriched limit sketches
-Ehresmann 1968

· A limit sketch is a category T with
a collection of
10 : 5-2

, p
: xx->8)

/

diagrams
cores over diagrams



Enriched limit sketches

· A U-limit Sketch Kelly19a
T with a collection of
(W :5+V

,
0 : 5-2

, p
:w + e(X,0 -) /

I I

weights diagrams weighted cones



Enriched limit sketches

L Kelly 1982
· A U-limit sketch is a V-cat

T with a collection of
(W :5+ V

,
0 : 5-2

, p
:w + e(X,0-)

I I

weights diagrams weighted cones

· U = Cat -> Two-dim .

lim sketch



Enriched limit sketches

L Kelly 1982
· A U-limit sketch is a V-cat

T with a collection of
(W :5+ V

,
0 : 5-2

, p
:w + e(X,0-)

I I

weights diagrams weighted cones

· U = Cat -> Two-dim .

lim sketch
·

U-F + enhanced 2-dlim
Sketch



Enriched limit sketches

L Kelly 1982
· A U-limit sketch is a V-cat

T with a collection of
(W :5+ V

,
0 : 5-2

, p
:w + e(X,0-)

I I

weights diagrams weighted cones

· U = Cat -> Two-dim .

lim sketch
·

U-F + enhanced 2-dlim
Sketch

·

. Model ofTin V-sketch 2-

is a sketch morphism :
S -

cones
.V-functor preserving weighted



Models of F-sketches-
Mode (T

,
C) is F-cutofmodels-

lax & lax maps.



Models of F-sketches-
Mode (T

,
C) is F-cutofmodels-

lax & lax maps.
- loose morph MAN is- M

Y
lax natural transf Tx o Ex
-

such that A N

S -
↑ - Tx fly Ex is -natural ·
W
N



Models of F-sketches-
Mode (T

,
C) is F-cutofmodels-

lax & lax maps ↓

-· loose morph MAN is M
-

Y
lax natural transf Tx Os Ex
-

such that A N

S -
↑ Tx fly Ex is -natural :
W

bx N
ic

.

MX umNX
Mx4f NX is an identity 2 all

S

My un) NY for < : X+Y light.
by



Models of F-sketches-
Mode (T

,
C) is F-cutofmodels-

lax & lax maps ↓

· loose morph MAN is M
-

Y
lax natural transf Tx Os Ex
-

such that A N

S -
↑ Tx fly Ex is -natural :
W

bx N
ic

.

MX umNX
Mx4f NX is an identity 2 all

S

My un) NY for x : X+Y Fight.
by

& I
- To

.

= F-not transformalTight-



Models of F-sketches-
Mode (T

,
C) is F-cutofmodels-

lax & lax maps ↓

· loose morph MAN is M
-

Y
lax natural transf Tx Os Ex
-

such that A N

S -
↑ Tx fly Ex is -natural :
W

bx N
ic

.

MX umNX
Mx4f NX is an identity 2 all
My un) NY for x : X+Y Fight.
by
-

&

right = F-nat transformation.-

⑨ Z-alls are modifications
.



Tocats of models otd

· we Es , p , l , c !
/11 -

strict psender lax colax



Focats of models otd

· we Es , p , l , c !
L 117

strict psender lax colax

· F- cat of models ModT,e
involves wonatural transformations



Focats of models otd

· we Es , p , l , c !
/11)

strict psender lax colax

· F- cat of models ModT,e)
involves wonatural transformations

· Each in factan F-sketch :

Take levelwise weighted cones.
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Notation) For we Es , p , l , ce
let 5 = 5

, p = p , t=c , T=1 .

Theorem
Let S

,
T
,
I be F-sketches.

Then we havei of F-sketches
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-

Proof
-
Biclosed monoidal cat of
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Forthcoming paper :

Enhamed 2-dimensional limit

Sketches & double cats
with structure

(Arkar ,Bourke ,Not



References
· Lack-Shulman : Enhanced Zcats.

· Lack : Two-dimensional lawere

theories (Talkof CT2009

· Framed bicats & monoidal fibrations
Shulman

Moeller
· Monoidal Gothendiesk :[Vasile opoulou
· Double Fibrations (CLPS)
· Accessible aspects ofIcatMr.

(58)


